A Graphical Representation of Matroids

A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1973-12, Vol.25 (4), p.618-627
Hauptverfasser: Holzmann, C. A., Norton, P. G., Tobey, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 627
container_issue 4
container_start_page 618
container_title SIAM journal on applied mathematics
container_volume 25
creator Holzmann, C. A.
Norton, P. G.
Tobey, M. D.
description A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.
doi_str_mv 10.1137/0125060
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_917622450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2100030</jstor_id><sourcerecordid>2100030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</originalsourceid><addsrcrecordid>eNo90MFLwzAUx_EgCtYp_gMeigc9Vd97SdPmOMacwkQQBW8haxNsmUtNsoP_vZUOT-_y4f3gy9glwh0ir-4BqQQJRyxDUGVRIX0cswyAywK5UqfsLMYeAFEKlbGbeb4KZvjsGrPNX-0QbLS7ZFLnd7l3-bNJwXdtPGcnzmyjvTjcGXt_WL4tHov1y-ppMV8XDQFPhaul4sSrUgg0rZM1KNGUG75RVkFF1nEpUEoyFqQzlcSaqDZKtLZGAkd8xq6nv0Pw33sbk-79PuzGSa2wkkSihBHdTqgJPsZgnR5C92XCj0bQfw30ocEorybZx-TDPyOEsQfwX7rlU7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917622450</pqid></control><display><type>article</type><title>A Graphical Representation of Matroids</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Holzmann, C. A. ; Norton, P. G. ; Tobey, M. D.</creator><creatorcontrib>Holzmann, C. A. ; Norton, P. G. ; Tobey, M. D.</creatorcontrib><description>A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0125060</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Decomposition ; Graph theory ; Graphics ; Graphs ; Induced subgraphs ; Line graphs ; Mathematics ; Matroids ; Neighborhoods</subject><ispartof>SIAM journal on applied mathematics, 1973-12, Vol.25 (4), p.618-627</ispartof><rights>Copyright 1973 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1973 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</citedby><cites>FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2100030$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2100030$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,3172,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Holzmann, C. A.</creatorcontrib><creatorcontrib>Norton, P. G.</creatorcontrib><creatorcontrib>Tobey, M. D.</creatorcontrib><title>A Graphical Representation of Matroids</title><title>SIAM journal on applied mathematics</title><description>A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.</description><subject>Decomposition</subject><subject>Graph theory</subject><subject>Graphics</subject><subject>Graphs</subject><subject>Induced subgraphs</subject><subject>Line graphs</subject><subject>Mathematics</subject><subject>Matroids</subject><subject>Neighborhoods</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90MFLwzAUx_EgCtYp_gMeigc9Vd97SdPmOMacwkQQBW8haxNsmUtNsoP_vZUOT-_y4f3gy9glwh0ir-4BqQQJRyxDUGVRIX0cswyAywK5UqfsLMYeAFEKlbGbeb4KZvjsGrPNX-0QbLS7ZFLnd7l3-bNJwXdtPGcnzmyjvTjcGXt_WL4tHov1y-ppMV8XDQFPhaul4sSrUgg0rZM1KNGUG75RVkFF1nEpUEoyFqQzlcSaqDZKtLZGAkd8xq6nv0Pw33sbk-79PuzGSa2wkkSihBHdTqgJPsZgnR5C92XCj0bQfw30ocEorybZx-TDPyOEsQfwX7rlU7M</recordid><startdate>19731201</startdate><enddate>19731201</enddate><creator>Holzmann, C. A.</creator><creator>Norton, P. G.</creator><creator>Tobey, M. D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19731201</creationdate><title>A Graphical Representation of Matroids</title><author>Holzmann, C. A. ; Norton, P. G. ; Tobey, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Decomposition</topic><topic>Graph theory</topic><topic>Graphics</topic><topic>Graphs</topic><topic>Induced subgraphs</topic><topic>Line graphs</topic><topic>Mathematics</topic><topic>Matroids</topic><topic>Neighborhoods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holzmann, C. A.</creatorcontrib><creatorcontrib>Norton, P. G.</creatorcontrib><creatorcontrib>Tobey, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holzmann, C. A.</au><au>Norton, P. G.</au><au>Tobey, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Graphical Representation of Matroids</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1973-12-01</date><risdate>1973</risdate><volume>25</volume><issue>4</issue><spage>618</spage><epage>627</epage><pages>618-627</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0125060</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1973-12, Vol.25 (4), p.618-627
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_917622450
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive
subjects Decomposition
Graph theory
Graphics
Graphs
Induced subgraphs
Line graphs
Mathematics
Matroids
Neighborhoods
title A Graphical Representation of Matroids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Graphical%20Representation%20of%20Matroids&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Holzmann,%20C.%20A.&rft.date=1973-12-01&rft.volume=25&rft.issue=4&rft.spage=618&rft.epage=627&rft.pages=618-627&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0125060&rft_dat=%3Cjstor_proqu%3E2100030%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917622450&rft_id=info:pmid/&rft_jstor_id=2100030&rfr_iscdi=true