A Graphical Representation of Matroids
A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In partic...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 1973-12, Vol.25 (4), p.618-627 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 627 |
---|---|
container_issue | 4 |
container_start_page | 618 |
container_title | SIAM journal on applied mathematics |
container_volume | 25 |
creator | Holzmann, C. A. Norton, P. G. Tobey, M. D. |
description | A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem. |
doi_str_mv | 10.1137/0125060 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_917622450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2100030</jstor_id><sourcerecordid>2100030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</originalsourceid><addsrcrecordid>eNo90MFLwzAUx_EgCtYp_gMeigc9Vd97SdPmOMacwkQQBW8haxNsmUtNsoP_vZUOT-_y4f3gy9glwh0ir-4BqQQJRyxDUGVRIX0cswyAywK5UqfsLMYeAFEKlbGbeb4KZvjsGrPNX-0QbLS7ZFLnd7l3-bNJwXdtPGcnzmyjvTjcGXt_WL4tHov1y-ppMV8XDQFPhaul4sSrUgg0rZM1KNGUG75RVkFF1nEpUEoyFqQzlcSaqDZKtLZGAkd8xq6nv0Pw33sbk-79PuzGSa2wkkSihBHdTqgJPsZgnR5C92XCj0bQfw30ocEorybZx-TDPyOEsQfwX7rlU7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917622450</pqid></control><display><type>article</type><title>A Graphical Representation of Matroids</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Holzmann, C. A. ; Norton, P. G. ; Tobey, M. D.</creator><creatorcontrib>Holzmann, C. A. ; Norton, P. G. ; Tobey, M. D.</creatorcontrib><description>A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0125060</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Decomposition ; Graph theory ; Graphics ; Graphs ; Induced subgraphs ; Line graphs ; Mathematics ; Matroids ; Neighborhoods</subject><ispartof>SIAM journal on applied mathematics, 1973-12, Vol.25 (4), p.618-627</ispartof><rights>Copyright 1973 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1973 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</citedby><cites>FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2100030$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2100030$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,3172,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Holzmann, C. A.</creatorcontrib><creatorcontrib>Norton, P. G.</creatorcontrib><creatorcontrib>Tobey, M. D.</creatorcontrib><title>A Graphical Representation of Matroids</title><title>SIAM journal on applied mathematics</title><description>A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.</description><subject>Decomposition</subject><subject>Graph theory</subject><subject>Graphics</subject><subject>Graphs</subject><subject>Induced subgraphs</subject><subject>Line graphs</subject><subject>Mathematics</subject><subject>Matroids</subject><subject>Neighborhoods</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90MFLwzAUx_EgCtYp_gMeigc9Vd97SdPmOMacwkQQBW8haxNsmUtNsoP_vZUOT-_y4f3gy9glwh0ir-4BqQQJRyxDUGVRIX0cswyAywK5UqfsLMYeAFEKlbGbeb4KZvjsGrPNX-0QbLS7ZFLnd7l3-bNJwXdtPGcnzmyjvTjcGXt_WL4tHov1y-ppMV8XDQFPhaul4sSrUgg0rZM1KNGUG75RVkFF1nEpUEoyFqQzlcSaqDZKtLZGAkd8xq6nv0Pw33sbk-79PuzGSa2wkkSihBHdTqgJPsZgnR5C92XCj0bQfw30ocEorybZx-TDPyOEsQfwX7rlU7M</recordid><startdate>19731201</startdate><enddate>19731201</enddate><creator>Holzmann, C. A.</creator><creator>Norton, P. G.</creator><creator>Tobey, M. D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19731201</creationdate><title>A Graphical Representation of Matroids</title><author>Holzmann, C. A. ; Norton, P. G. ; Tobey, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-f86932375441adf68094c5b3b9e9072ef3641662ae06fa7618228a94de8120f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Decomposition</topic><topic>Graph theory</topic><topic>Graphics</topic><topic>Graphs</topic><topic>Induced subgraphs</topic><topic>Line graphs</topic><topic>Mathematics</topic><topic>Matroids</topic><topic>Neighborhoods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holzmann, C. A.</creatorcontrib><creatorcontrib>Norton, P. G.</creatorcontrib><creatorcontrib>Tobey, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holzmann, C. A.</au><au>Norton, P. G.</au><au>Tobey, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Graphical Representation of Matroids</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1973-12-01</date><risdate>1973</risdate><volume>25</volume><issue>4</issue><spage>618</spage><epage>627</epage><pages>618-627</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>A base graph of a matroid is the graph whose points are the bases of the matroid. Two bases are adjacent if they differ by exactly one element. A definition of equivalence of matroids is given and it is shown that two matroids are equivalent if and only if their base graphs are isomorphic. In particular, if M and M1 are nonseparable matroids with isomorphic base graphs, then M is isomorphic to either M1 or its dual. Thus, the study of matroids is reduced to the study of a class of graphs: the base graphs. A detailed investigation of the structure of neighborhoods in the base graph is carried out and this is used to establish the above result. Included in the result is a graphical classification of separable matroids which gives a new proof of Whitney's decomposition theorem.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0125060</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 1973-12, Vol.25 (4), p.618-627 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_917622450 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive |
subjects | Decomposition Graph theory Graphics Graphs Induced subgraphs Line graphs Mathematics Matroids Neighborhoods |
title | A Graphical Representation of Matroids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Graphical%20Representation%20of%20Matroids&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Holzmann,%20C.%20A.&rft.date=1973-12-01&rft.volume=25&rft.issue=4&rft.spage=618&rft.epage=627&rft.pages=618-627&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0125060&rft_dat=%3Cjstor_proqu%3E2100030%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917622450&rft_id=info:pmid/&rft_jstor_id=2100030&rfr_iscdi=true |