A Modified Two-Time Method for the Dynamic Transitions of Bifurcation
The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 1980-04, Vol.38 (2), p.249-260 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 249 |
container_title | SIAM journal on applied mathematics |
container_volume | 38 |
creator | Reiss, Edward L. |
description | The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data. |
doi_str_mv | 10.1137/0138021 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_917180139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2101016</jstor_id><sourcerecordid>2101016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKv4B1wEN65GcyczeSxrrQ9ocTOCuyHmQVPspCYzSP-9KVPkLg4XPu459yB0DeQegPIHAlSQEk7QBIisCw7l5ymaEEJZAVTKc3SR0oYQAFbJCVrM8CoY77w1uPkNReO3Fq9svw4GuxBxv7b4ad-prde4iapLvvehSzg4_OjdELU67JfozKnvZK-OOkUfz4tm_los31_e5rNloQGELJTmpqZcaTDOZPvKaENlWVtZM82osoYJ0BXXzBojBS-F5UIymnOD_mIVnaLb8e4uhp_Bpr7dhCF22bKVwEHk32WG7kZIx5BStK7dRb9Vcd8CaQ8VtceKMnkzkpvUh_iPlUDyMPoHBalftg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917180139</pqid></control><display><type>article</type><title>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Reiss, Edward L.</creator><creatorcontrib>Reiss, Edward L.</creatorcontrib><description>The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0138021</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Amplitude ; Approximation ; Buckling ; Cauchy problem ; Compression bandages ; Differential equations ; High frequencies ; Mathematical independent variables ; Periodic functions ; Restrictions ; Sine function</subject><ispartof>SIAM journal on applied mathematics, 1980-04, Vol.38 (2), p.249-260</ispartof><rights>Copyright 1980 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1980 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</citedby><cites>FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2101016$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2101016$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3183,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Reiss, Edward L.</creatorcontrib><title>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</title><title>SIAM journal on applied mathematics</title><description>The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.</description><subject>Amplitude</subject><subject>Approximation</subject><subject>Buckling</subject><subject>Cauchy problem</subject><subject>Compression bandages</subject><subject>Differential equations</subject><subject>High frequencies</subject><subject>Mathematical independent variables</subject><subject>Periodic functions</subject><subject>Restrictions</subject><subject>Sine function</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLAzEUhYMoWKv4B1wEN65GcyczeSxrrQ9ocTOCuyHmQVPspCYzSP-9KVPkLg4XPu459yB0DeQegPIHAlSQEk7QBIisCw7l5ymaEEJZAVTKc3SR0oYQAFbJCVrM8CoY77w1uPkNReO3Fq9svw4GuxBxv7b4ad-prde4iapLvvehSzg4_OjdELU67JfozKnvZK-OOkUfz4tm_los31_e5rNloQGELJTmpqZcaTDOZPvKaENlWVtZM82osoYJ0BXXzBojBS-F5UIymnOD_mIVnaLb8e4uhp_Bpr7dhCF22bKVwEHk32WG7kZIx5BStK7dRb9Vcd8CaQ8VtceKMnkzkpvUh_iPlUDyMPoHBalftg</recordid><startdate>19800401</startdate><enddate>19800401</enddate><creator>Reiss, Edward L.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19800401</creationdate><title>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</title><author>Reiss, Edward L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Amplitude</topic><topic>Approximation</topic><topic>Buckling</topic><topic>Cauchy problem</topic><topic>Compression bandages</topic><topic>Differential equations</topic><topic>High frequencies</topic><topic>Mathematical independent variables</topic><topic>Periodic functions</topic><topic>Restrictions</topic><topic>Sine function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiss, Edward L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiss, Edward L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1980-04-01</date><risdate>1980</risdate><volume>38</volume><issue>2</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0138021</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 1980-04, Vol.38 (2), p.249-260 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_917180139 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Amplitude Approximation Buckling Cauchy problem Compression bandages Differential equations High frequencies Mathematical independent variables Periodic functions Restrictions Sine function |
title | A Modified Two-Time Method for the Dynamic Transitions of Bifurcation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20Two-Time%20Method%20for%20the%20Dynamic%20Transitions%20of%20Bifurcation&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Reiss,%20Edward%20L.&rft.date=1980-04-01&rft.volume=38&rft.issue=2&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0138021&rft_dat=%3Cjstor_proqu%3E2101016%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917180139&rft_id=info:pmid/&rft_jstor_id=2101016&rfr_iscdi=true |