A Modified Two-Time Method for the Dynamic Transitions of Bifurcation

The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1980-04, Vol.38 (2), p.249-260
1. Verfasser: Reiss, Edward L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 249
container_title SIAM journal on applied mathematics
container_volume 38
creator Reiss, Edward L.
description The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.
doi_str_mv 10.1137/0138021
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_917180139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2101016</jstor_id><sourcerecordid>2101016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKv4B1wEN65GcyczeSxrrQ9ocTOCuyHmQVPspCYzSP-9KVPkLg4XPu459yB0DeQegPIHAlSQEk7QBIisCw7l5ymaEEJZAVTKc3SR0oYQAFbJCVrM8CoY77w1uPkNReO3Fq9svw4GuxBxv7b4ad-prde4iapLvvehSzg4_OjdELU67JfozKnvZK-OOkUfz4tm_los31_e5rNloQGELJTmpqZcaTDOZPvKaENlWVtZM82osoYJ0BXXzBojBS-F5UIymnOD_mIVnaLb8e4uhp_Bpr7dhCF22bKVwEHk32WG7kZIx5BStK7dRb9Vcd8CaQ8VtceKMnkzkpvUh_iPlUDyMPoHBalftg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917180139</pqid></control><display><type>article</type><title>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Reiss, Edward L.</creator><creatorcontrib>Reiss, Edward L.</creatorcontrib><description>The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0138021</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Amplitude ; Approximation ; Buckling ; Cauchy problem ; Compression bandages ; Differential equations ; High frequencies ; Mathematical independent variables ; Periodic functions ; Restrictions ; Sine function</subject><ispartof>SIAM journal on applied mathematics, 1980-04, Vol.38 (2), p.249-260</ispartof><rights>Copyright 1980 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1980 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</citedby><cites>FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2101016$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2101016$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3183,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Reiss, Edward L.</creatorcontrib><title>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</title><title>SIAM journal on applied mathematics</title><description>The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.</description><subject>Amplitude</subject><subject>Approximation</subject><subject>Buckling</subject><subject>Cauchy problem</subject><subject>Compression bandages</subject><subject>Differential equations</subject><subject>High frequencies</subject><subject>Mathematical independent variables</subject><subject>Periodic functions</subject><subject>Restrictions</subject><subject>Sine function</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEtLAzEUhYMoWKv4B1wEN65GcyczeSxrrQ9ocTOCuyHmQVPspCYzSP-9KVPkLg4XPu459yB0DeQegPIHAlSQEk7QBIisCw7l5ymaEEJZAVTKc3SR0oYQAFbJCVrM8CoY77w1uPkNReO3Fq9svw4GuxBxv7b4ad-prde4iapLvvehSzg4_OjdELU67JfozKnvZK-OOkUfz4tm_los31_e5rNloQGELJTmpqZcaTDOZPvKaENlWVtZM82osoYJ0BXXzBojBS-F5UIymnOD_mIVnaLb8e4uhp_Bpr7dhCF22bKVwEHk32WG7kZIx5BStK7dRb9Vcd8CaQ8VtceKMnkzkpvUh_iPlUDyMPoHBalftg</recordid><startdate>19800401</startdate><enddate>19800401</enddate><creator>Reiss, Edward L.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19800401</creationdate><title>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</title><author>Reiss, Edward L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1189-ac7d537ac1dfd6494dcd3925e956c63aed681c47c6edd98728e789631391cb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Amplitude</topic><topic>Approximation</topic><topic>Buckling</topic><topic>Cauchy problem</topic><topic>Compression bandages</topic><topic>Differential equations</topic><topic>High frequencies</topic><topic>Mathematical independent variables</topic><topic>Periodic functions</topic><topic>Restrictions</topic><topic>Sine function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiss, Edward L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiss, Edward L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified Two-Time Method for the Dynamic Transitions of Bifurcation</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1980-04-01</date><risdate>1980</risdate><volume>38</volume><issue>2</issue><spage>249</spage><epage>260</epage><pages>249-260</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>The two-time method has been used successfully to determine the dynamic transitions that occur from an unstable equilibrium state which is called the basic state, to stable equilibrium states that have bifurcated supercritically from the basic state. For some problems, this method is applicable only for a restricted class of initial disturbances. A modification of the two-time method is presented which eliminates these restrictions on the initial data.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0138021</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1980-04, Vol.38 (2), p.249-260
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_917180139
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects Amplitude
Approximation
Buckling
Cauchy problem
Compression bandages
Differential equations
High frequencies
Mathematical independent variables
Periodic functions
Restrictions
Sine function
title A Modified Two-Time Method for the Dynamic Transitions of Bifurcation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20Two-Time%20Method%20for%20the%20Dynamic%20Transitions%20of%20Bifurcation&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Reiss,%20Edward%20L.&rft.date=1980-04-01&rft.volume=38&rft.issue=2&rft.spage=249&rft.epage=260&rft.pages=249-260&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0138021&rft_dat=%3Cjstor_proqu%3E2101016%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917180139&rft_id=info:pmid/&rft_jstor_id=2101016&rfr_iscdi=true