Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Quations II. Rapid Oscillations and Resonances

This paper continues a study of a class of boundary-value problems for linear second-order differential-difference equations in which the second-order derivative is multiplied by a small parameter (SIAM J. Appl. Math., 42 (1982), pp. 502-531). The previous paper focused on problems involving boundar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1985-10, Vol.45 (5), p.687-707
Hauptverfasser: Lange, Charles G., Miura, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 5
container_start_page 687
container_title SIAM journal on applied mathematics
container_volume 45
creator Lange, Charles G.
Miura, Robert M.
description This paper continues a study of a class of boundary-value problems for linear second-order differential-difference equations in which the second-order derivative is multiplied by a small parameter (SIAM J. Appl. Math., 42 (1982), pp. 502-531). The previous paper focused on problems involving boundary and interior layer phenomena. Here the problems studied have solutions exhibiting rapid oscillations. The presence of the shift terms can induce large amplitudes, multiphase behavior, and resonance phenomena.n particular, we study two types of resonance phenomena, namely "global" and "local" resonance. A combination of exact solutions, singular perturbation methods, and numerical computations are used in these studies. In a companion paper (SIAM J. Appl. Math., 45 (1985), pp. 708-734) we study problems with solutions which exhibit turning point behavior.
doi_str_mv 10.1137/0145041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_917000767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566171421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c977-ed604aac59fbd12707713fee48a3388791fcc568650b0b2a7a2f4e4cea97920f3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhIMoWKv4F4IXT1vfbHY3zbHWr0KhtRbxtrybTSQl3dRk99C7P9zV1tMww8PADCHXDEaMcXEHLMshYydkwEDmiWDpxykZAPAiYVzKc3IR4waAsSKTA_L9ZpvPzmGgSx3aLlTYWt_QSYNuH22k3tB73zU1hn3yjq7TdBl85fQ2UuMDfbDG6KCb1qJL_o3S9LX764l0NhvRFe5sTRdRWeeOMTY1XenoG-zpeEnODLqor446JOunx_X0JZkvnmfTyTxRUohE1wVkiCqXpqpZKkAIxo3W2Rg5H4-FZEapvBgXOVRQpSgwNZnOlEYpZAqGD8nNoXYX_FenY1tufBf6pbGUTACAKEQP3R4gFXyMQZtyF-y2n18yKH8PLo8H8x8AkG6b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917000767</pqid></control><display><type>article</type><title>Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Quations II. Rapid Oscillations and Resonances</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Lange, Charles G. ; Miura, Robert M.</creator><creatorcontrib>Lange, Charles G. ; Miura, Robert M.</creatorcontrib><description>This paper continues a study of a class of boundary-value problems for linear second-order differential-difference equations in which the second-order derivative is multiplied by a small parameter (SIAM J. Appl. Math., 42 (1982), pp. 502-531). The previous paper focused on problems involving boundary and interior layer phenomena. Here the problems studied have solutions exhibiting rapid oscillations. The presence of the shift terms can induce large amplitudes, multiphase behavior, and resonance phenomena.n particular, we study two types of resonance phenomena, namely "global" and "local" resonance. A combination of exact solutions, singular perturbation methods, and numerical computations are used in these studies. In a companion paper (SIAM J. Appl. Math., 45 (1985), pp. 708-734) we study problems with solutions which exhibit turning point behavior.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0145041</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Control theory ; Neurobiology ; Neurosciences</subject><ispartof>SIAM journal on applied mathematics, 1985-10, Vol.45 (5), p.687-707</ispartof><rights>[Copyright] © 1985 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c977-ed604aac59fbd12707713fee48a3388791fcc568650b0b2a7a2f4e4cea97920f3</citedby><cites>FETCH-LOGICAL-c977-ed604aac59fbd12707713fee48a3388791fcc568650b0b2a7a2f4e4cea97920f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3183,27923,27924</link.rule.ids></links><search><creatorcontrib>Lange, Charles G.</creatorcontrib><creatorcontrib>Miura, Robert M.</creatorcontrib><title>Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Quations II. Rapid Oscillations and Resonances</title><title>SIAM journal on applied mathematics</title><description>This paper continues a study of a class of boundary-value problems for linear second-order differential-difference equations in which the second-order derivative is multiplied by a small parameter (SIAM J. Appl. Math., 42 (1982), pp. 502-531). The previous paper focused on problems involving boundary and interior layer phenomena. Here the problems studied have solutions exhibiting rapid oscillations. The presence of the shift terms can induce large amplitudes, multiphase behavior, and resonance phenomena.n particular, we study two types of resonance phenomena, namely "global" and "local" resonance. A combination of exact solutions, singular perturbation methods, and numerical computations are used in these studies. In a companion paper (SIAM J. Appl. Math., 45 (1985), pp. 708-734) we study problems with solutions which exhibit turning point behavior.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Control theory</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kE1LAzEYhIMoWKv4F4IXT1vfbHY3zbHWr0KhtRbxtrybTSQl3dRk99C7P9zV1tMww8PADCHXDEaMcXEHLMshYydkwEDmiWDpxykZAPAiYVzKc3IR4waAsSKTA_L9ZpvPzmGgSx3aLlTYWt_QSYNuH22k3tB73zU1hn3yjq7TdBl85fQ2UuMDfbDG6KCb1qJL_o3S9LX764l0NhvRFe5sTRdRWeeOMTY1XenoG-zpeEnODLqor446JOunx_X0JZkvnmfTyTxRUohE1wVkiCqXpqpZKkAIxo3W2Rg5H4-FZEapvBgXOVRQpSgwNZnOlEYpZAqGD8nNoXYX_FenY1tufBf6pbGUTACAKEQP3R4gFXyMQZtyF-y2n18yKH8PLo8H8x8AkG6b</recordid><startdate>198510</startdate><enddate>198510</enddate><creator>Lange, Charles G.</creator><creator>Miura, Robert M.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>198510</creationdate><title>Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Quations II. Rapid Oscillations and Resonances</title><author>Lange, Charles G. ; Miura, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c977-ed604aac59fbd12707713fee48a3388791fcc568650b0b2a7a2f4e4cea97920f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Control theory</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Charles G.</creatorcontrib><creatorcontrib>Miura, Robert M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lange, Charles G.</au><au>Miura, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Quations II. Rapid Oscillations and Resonances</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1985-10</date><risdate>1985</risdate><volume>45</volume><issue>5</issue><spage>687</spage><epage>707</epage><pages>687-707</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>This paper continues a study of a class of boundary-value problems for linear second-order differential-difference equations in which the second-order derivative is multiplied by a small parameter (SIAM J. Appl. Math., 42 (1982), pp. 502-531). The previous paper focused on problems involving boundary and interior layer phenomena. Here the problems studied have solutions exhibiting rapid oscillations. The presence of the shift terms can induce large amplitudes, multiphase behavior, and resonance phenomena.n particular, we study two types of resonance phenomena, namely "global" and "local" resonance. A combination of exact solutions, singular perturbation methods, and numerical computations are used in these studies. In a companion paper (SIAM J. Appl. Math., 45 (1985), pp. 708-734) we study problems with solutions which exhibit turning point behavior.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0145041</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1985-10, Vol.45 (5), p.687-707
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_917000767
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Approximation
Control theory
Neurobiology
Neurosciences
title Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Quations II. Rapid Oscillations and Resonances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Perturbation%20Analysis%20of%20Boundary-Value%20Problems%20for%20Differential-Difference%20Quations%20II.%20Rapid%20Oscillations%20and%20Resonances&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Lange,%20Charles%20G.&rft.date=1985-10&rft.volume=45&rft.issue=5&rft.spage=687&rft.epage=707&rft.pages=687-707&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0145041&rft_dat=%3Cproquest_cross%3E2566171421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917000767&rft_id=info:pmid/&rfr_iscdi=true