Probe Waveforms and Deconvolution in the Experimental Determination of Elastic Green's Functions

We propose a new time domain method for the experimental determination of the "impulse response" of linear systems. The technique centers around the use of specifically designed probe waveforms. These waveforms are particular C∞ approximations to the Dirac δ-function and the Heaviside unit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1985-06, Vol.45 (3), p.369-382
Hauptverfasser: Carasso, Alfred S., Hsu, Nelson N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 369
container_title SIAM journal on applied mathematics
container_volume 45
creator Carasso, Alfred S.
Hsu, Nelson N.
description We propose a new time domain method for the experimental determination of the "impulse response" of linear systems. The technique centers around the use of specifically designed probe waveforms. These waveforms are particular C∞ approximations to the Dirac δ-function and the Heaviside unit step function, and lead to a subsequent time domain deconvolution problem which can be implemented as a Cauchy initial value problem. This approach allows for continuous deconvolution, a powerful option in the presence of noise. We orient the discussion to the context of acoustic emission and elastic Green's functions, and present several numerical reconstructions of sharp signals from smooth synthetic data.
doi_str_mv 10.1137/0145021
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_917000737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2101718</jstor_id><sourcerecordid>2101718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-9d6cfecef8ad24aa31a2fde4857f6dec52d771bd8d79f3a2c6eb6885f86e1f3e3</originalsourceid><addsrcrecordid>eNo90EFLwzAUB_AgCs4pfgEPQYSdqnlJ26RHmdsUBnpQ9Faz9AU7umQm7dBvb-fGTu_w__F_vEfIJbBbACHvGKQZ43BEBsCKLJHAP47JgDGRJyCK4pScxbhkDCBPiwH5fAl-gfRdb9D6sIpUu4o-oPFu45uurb2jtaPtF9LJzxpDvULX6qYXLYZV7fS_8JZOGh3b2tBZQHSjSKedM9ssnpMTq5uIF_s5JG_Tyev4MZk_z57G9_PECMbapKhyY9GgVbriqdYCNLcVpiqTNq_QZLySEhaVqmRhheYmx0WuVGZVjmAFiiG53vWug__uMLbl0nfB9SvLAiRjTArZo9EOmeBjDGjLdX-SDr8lsHL7vXL_vV7e7Ot0NLqxQTtTxwNXqeCFyHp2tWPL2PpwiDkwkKDEHzuReNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917000737</pqid></control><display><type>article</type><title>Probe Waveforms and Deconvolution in the Experimental Determination of Elastic Green's Functions</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Carasso, Alfred S. ; Hsu, Nelson N.</creator><creatorcontrib>Carasso, Alfred S. ; Hsu, Nelson N.</creatorcontrib><description>We propose a new time domain method for the experimental determination of the "impulse response" of linear systems. The technique centers around the use of specifically designed probe waveforms. These waveforms are particular C∞ approximations to the Dirac δ-function and the Heaviside unit step function, and lead to a subsequent time domain deconvolution problem which can be implemented as a Cauchy initial value problem. This approach allows for continuous deconvolution, a powerful option in the presence of noise. We orient the discussion to the context of acoustic emission and elastic Green's functions, and present several numerical reconstructions of sharp signals from smooth synthetic data.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0145021</identifier><identifier>CODEN: SMJMAP</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Acoustic emission ; Approximation ; Cauchy problem ; Conductive heat transfer ; Exact sciences and technology ; Function theory, analysis ; Greens function ; Heat transfer ; Integral equations ; Laplace transforms ; Mathematical methods in physics ; Partial differential equations ; Physics ; Signal noise ; Time dependence ; Waveforms</subject><ispartof>SIAM journal on applied mathematics, 1985-06, Vol.45 (3), p.369-382</ispartof><rights>Copyright 1985 Society for Industrial and Applied Mathematics</rights><rights>1986 INIST-CNRS</rights><rights>[Copyright] © 1985 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-9d6cfecef8ad24aa31a2fde4857f6dec52d771bd8d79f3a2c6eb6885f86e1f3e3</citedby><cites>FETCH-LOGICAL-c300t-9d6cfecef8ad24aa31a2fde4857f6dec52d771bd8d79f3a2c6eb6885f86e1f3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2101718$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2101718$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3185,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8432935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carasso, Alfred S.</creatorcontrib><creatorcontrib>Hsu, Nelson N.</creatorcontrib><title>Probe Waveforms and Deconvolution in the Experimental Determination of Elastic Green's Functions</title><title>SIAM journal on applied mathematics</title><description>We propose a new time domain method for the experimental determination of the "impulse response" of linear systems. The technique centers around the use of specifically designed probe waveforms. These waveforms are particular C∞ approximations to the Dirac δ-function and the Heaviside unit step function, and lead to a subsequent time domain deconvolution problem which can be implemented as a Cauchy initial value problem. This approach allows for continuous deconvolution, a powerful option in the presence of noise. We orient the discussion to the context of acoustic emission and elastic Green's functions, and present several numerical reconstructions of sharp signals from smooth synthetic data.</description><subject>A priori knowledge</subject><subject>Acoustic emission</subject><subject>Approximation</subject><subject>Cauchy problem</subject><subject>Conductive heat transfer</subject><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Greens function</subject><subject>Heat transfer</subject><subject>Integral equations</subject><subject>Laplace transforms</subject><subject>Mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Signal noise</subject><subject>Time dependence</subject><subject>Waveforms</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90EFLwzAUB_AgCs4pfgEPQYSdqnlJ26RHmdsUBnpQ9Faz9AU7umQm7dBvb-fGTu_w__F_vEfIJbBbACHvGKQZ43BEBsCKLJHAP47JgDGRJyCK4pScxbhkDCBPiwH5fAl-gfRdb9D6sIpUu4o-oPFu45uurb2jtaPtF9LJzxpDvULX6qYXLYZV7fS_8JZOGh3b2tBZQHSjSKedM9ssnpMTq5uIF_s5JG_Tyev4MZk_z57G9_PECMbapKhyY9GgVbriqdYCNLcVpiqTNq_QZLySEhaVqmRhheYmx0WuVGZVjmAFiiG53vWug__uMLbl0nfB9SvLAiRjTArZo9EOmeBjDGjLdX-SDr8lsHL7vXL_vV7e7Ot0NLqxQTtTxwNXqeCFyHp2tWPL2PpwiDkwkKDEHzuReNo</recordid><startdate>19850601</startdate><enddate>19850601</enddate><creator>Carasso, Alfred S.</creator><creator>Hsu, Nelson N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19850601</creationdate><title>Probe Waveforms and Deconvolution in the Experimental Determination of Elastic Green's Functions</title><author>Carasso, Alfred S. ; Hsu, Nelson N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-9d6cfecef8ad24aa31a2fde4857f6dec52d771bd8d79f3a2c6eb6885f86e1f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>A priori knowledge</topic><topic>Acoustic emission</topic><topic>Approximation</topic><topic>Cauchy problem</topic><topic>Conductive heat transfer</topic><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Greens function</topic><topic>Heat transfer</topic><topic>Integral equations</topic><topic>Laplace transforms</topic><topic>Mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Signal noise</topic><topic>Time dependence</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carasso, Alfred S.</creatorcontrib><creatorcontrib>Hsu, Nelson N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carasso, Alfred S.</au><au>Hsu, Nelson N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probe Waveforms and Deconvolution in the Experimental Determination of Elastic Green's Functions</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1985-06-01</date><risdate>1985</risdate><volume>45</volume><issue>3</issue><spage>369</spage><epage>382</epage><pages>369-382</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><coden>SMJMAP</coden><abstract>We propose a new time domain method for the experimental determination of the "impulse response" of linear systems. The technique centers around the use of specifically designed probe waveforms. These waveforms are particular C∞ approximations to the Dirac δ-function and the Heaviside unit step function, and lead to a subsequent time domain deconvolution problem which can be implemented as a Cauchy initial value problem. This approach allows for continuous deconvolution, a powerful option in the presence of noise. We orient the discussion to the context of acoustic emission and elastic Green's functions, and present several numerical reconstructions of sharp signals from smooth synthetic data.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0145021</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1985-06, Vol.45 (3), p.369-382
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_917000737
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects A priori knowledge
Acoustic emission
Approximation
Cauchy problem
Conductive heat transfer
Exact sciences and technology
Function theory, analysis
Greens function
Heat transfer
Integral equations
Laplace transforms
Mathematical methods in physics
Partial differential equations
Physics
Signal noise
Time dependence
Waveforms
title Probe Waveforms and Deconvolution in the Experimental Determination of Elastic Green's Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probe%20Waveforms%20and%20Deconvolution%20in%20the%20Experimental%20Determination%20of%20Elastic%20Green's%20Functions&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Carasso,%20Alfred%20S.&rft.date=1985-06-01&rft.volume=45&rft.issue=3&rft.spage=369&rft.epage=382&rft.pages=369-382&rft.issn=0036-1399&rft.eissn=1095-712X&rft.coden=SMJMAP&rft_id=info:doi/10.1137/0145021&rft_dat=%3Cjstor_proqu%3E2101718%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917000737&rft_id=info:pmid/&rft_jstor_id=2101718&rfr_iscdi=true