Coding for Cryptographic Security Enhancement Using Stopping Sets

In this paper, we discuss the ability of channel codes to enhance cryptographic secrecy. Toward that end, we present the secrecy metric of degrees of freedom in an attacker's knowledge of the cryptogram, which is similar to equivocation. Using this notion of secrecy, we show how a specific prac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2011-09, Vol.6 (3), p.575-584
Hauptverfasser: Harrison, W. K., Almeida, J., McLaughlin, S. W., Barros, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 3
container_start_page 575
container_title IEEE transactions on information forensics and security
container_volume 6
creator Harrison, W. K.
Almeida, J.
McLaughlin, S. W.
Barros, J.
description In this paper, we discuss the ability of channel codes to enhance cryptographic secrecy. Toward that end, we present the secrecy metric of degrees of freedom in an attacker's knowledge of the cryptogram, which is similar to equivocation. Using this notion of secrecy, we show how a specific practical channel coding system can be used to hide information about the ciphertext, thus increasing the difficulty of cryptographic attacks. The system setup is the wiretap channel model where transmitted data traverse through independent packet erasure channels (PECs) with public feedback for authenticated automatic repeat-request (ARQ). The code design relies on puncturing nonsystematic low-density parity-check (LDPC) codes with the intent of inflicting an eavesdropper with stopping sets in the decoder. The design amplifies errors when stopping sets occur such that a receiver must guess all the channel-erased bits correctly to avoid an error rate of one half in the ciphertext. We extend previous results on the coding scheme by giving design criteria that reduce the effectiveness of a maximum-likelihood (ML) attack to that of a message-passing (MP) attack. We further extend security analysis to models with multiple receivers and collaborative attackers. Cryptographic security is even enhanced by the system when eavesdroppers have better channel quality than legitimate receivers.
doi_str_mv 10.1109/TIFS.2011.2145371
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_916955940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5753935</ieee_id><sourcerecordid>919907684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9daded3cb2b66fe2bd4885af7e08faedd54accb72ab452a2863d0d733b8b39643</originalsourceid><addsrcrecordid>eNpdkD1vwjAURa2qlUppf0DVJerSKdTfiUeESouE1AGYLcd-gSCIUzsZ-PdNCmLo9O5w7tXTQeiZ4AkhWL2vF_PVhGJCJpRwwTJyg0ZECJlKTMntNRN2jx5i3GPMOZH5CE1n3lX1Nil9SGbh1LR-G0yzq2yyAtuFqj0lH_XO1BaOULfJJg7wqvVN8xegjY_orjSHCE-XO0ab-cd69pUuvz8Xs-kytUxmbaqcceCYLWghZQm0cDzPhSkzwHlpwDnBjbVFRk3BBTU0l8xhlzFW5AVTkrMxejvvNsH_dBBbfayihcPB1OC7qBVRCmcyH8jXf-Ted6Hun-shqYRQHPcQOUM2-BgDlLoJ1dGEkyZYD0r1oFQPSvVFad95OXcqALjyIhNMMcF-AeIDcr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916955940</pqid></control><display><type>article</type><title>Coding for Cryptographic Security Enhancement Using Stopping Sets</title><source>IEEE Electronic Library (IEL)</source><creator>Harrison, W. K. ; Almeida, J. ; McLaughlin, S. W. ; Barros, J.</creator><creatorcontrib>Harrison, W. K. ; Almeida, J. ; McLaughlin, S. W. ; Barros, J.</creatorcontrib><description>In this paper, we discuss the ability of channel codes to enhance cryptographic secrecy. Toward that end, we present the secrecy metric of degrees of freedom in an attacker's knowledge of the cryptogram, which is similar to equivocation. Using this notion of secrecy, we show how a specific practical channel coding system can be used to hide information about the ciphertext, thus increasing the difficulty of cryptographic attacks. The system setup is the wiretap channel model where transmitted data traverse through independent packet erasure channels (PECs) with public feedback for authenticated automatic repeat-request (ARQ). The code design relies on puncturing nonsystematic low-density parity-check (LDPC) codes with the intent of inflicting an eavesdropper with stopping sets in the decoder. The design amplifies errors when stopping sets occur such that a receiver must guess all the channel-erased bits correctly to avoid an error rate of one half in the ciphertext. We extend previous results on the coding scheme by giving design criteria that reduce the effectiveness of a maximum-likelihood (ML) attack to that of a message-passing (MP) attack. We further extend security analysis to models with multiple receivers and collaborative attackers. Cryptographic security is even enhanced by the system when eavesdroppers have better channel quality than legitimate receivers.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2011.2145371</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic repeat-request (ARQ) ; Channels ; Codes ; Coding ; Complexity theory ; Computer information security ; Cryptography ; Decoding ; Design engineering ; Encoding ; Error correction ; Iterative decoding ; low-density parity-check (LDPC) codes ; physical-layer security ; practical code constructions ; Receivers ; Security ; stopping sets</subject><ispartof>IEEE transactions on information forensics and security, 2011-09, Vol.6 (3), p.575-584</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9daded3cb2b66fe2bd4885af7e08faedd54accb72ab452a2863d0d733b8b39643</citedby><cites>FETCH-LOGICAL-c367t-9daded3cb2b66fe2bd4885af7e08faedd54accb72ab452a2863d0d733b8b39643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5753935$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5753935$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harrison, W. K.</creatorcontrib><creatorcontrib>Almeida, J.</creatorcontrib><creatorcontrib>McLaughlin, S. W.</creatorcontrib><creatorcontrib>Barros, J.</creatorcontrib><title>Coding for Cryptographic Security Enhancement Using Stopping Sets</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>In this paper, we discuss the ability of channel codes to enhance cryptographic secrecy. Toward that end, we present the secrecy metric of degrees of freedom in an attacker's knowledge of the cryptogram, which is similar to equivocation. Using this notion of secrecy, we show how a specific practical channel coding system can be used to hide information about the ciphertext, thus increasing the difficulty of cryptographic attacks. The system setup is the wiretap channel model where transmitted data traverse through independent packet erasure channels (PECs) with public feedback for authenticated automatic repeat-request (ARQ). The code design relies on puncturing nonsystematic low-density parity-check (LDPC) codes with the intent of inflicting an eavesdropper with stopping sets in the decoder. The design amplifies errors when stopping sets occur such that a receiver must guess all the channel-erased bits correctly to avoid an error rate of one half in the ciphertext. We extend previous results on the coding scheme by giving design criteria that reduce the effectiveness of a maximum-likelihood (ML) attack to that of a message-passing (MP) attack. We further extend security analysis to models with multiple receivers and collaborative attackers. Cryptographic security is even enhanced by the system when eavesdroppers have better channel quality than legitimate receivers.</description><subject>Automatic repeat-request (ARQ)</subject><subject>Channels</subject><subject>Codes</subject><subject>Coding</subject><subject>Complexity theory</subject><subject>Computer information security</subject><subject>Cryptography</subject><subject>Decoding</subject><subject>Design engineering</subject><subject>Encoding</subject><subject>Error correction</subject><subject>Iterative decoding</subject><subject>low-density parity-check (LDPC) codes</subject><subject>physical-layer security</subject><subject>practical code constructions</subject><subject>Receivers</subject><subject>Security</subject><subject>stopping sets</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1vwjAURa2qlUppf0DVJerSKdTfiUeESouE1AGYLcd-gSCIUzsZ-PdNCmLo9O5w7tXTQeiZ4AkhWL2vF_PVhGJCJpRwwTJyg0ZECJlKTMntNRN2jx5i3GPMOZH5CE1n3lX1Nil9SGbh1LR-G0yzq2yyAtuFqj0lH_XO1BaOULfJJg7wqvVN8xegjY_orjSHCE-XO0ab-cd69pUuvz8Xs-kytUxmbaqcceCYLWghZQm0cDzPhSkzwHlpwDnBjbVFRk3BBTU0l8xhlzFW5AVTkrMxejvvNsH_dBBbfayihcPB1OC7qBVRCmcyH8jXf-Ted6Hun-shqYRQHPcQOUM2-BgDlLoJ1dGEkyZYD0r1oFQPSvVFad95OXcqALjyIhNMMcF-AeIDcr8</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Harrison, W. K.</creator><creator>Almeida, J.</creator><creator>McLaughlin, S. W.</creator><creator>Barros, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201109</creationdate><title>Coding for Cryptographic Security Enhancement Using Stopping Sets</title><author>Harrison, W. K. ; Almeida, J. ; McLaughlin, S. W. ; Barros, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9daded3cb2b66fe2bd4885af7e08faedd54accb72ab452a2863d0d733b8b39643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automatic repeat-request (ARQ)</topic><topic>Channels</topic><topic>Codes</topic><topic>Coding</topic><topic>Complexity theory</topic><topic>Computer information security</topic><topic>Cryptography</topic><topic>Decoding</topic><topic>Design engineering</topic><topic>Encoding</topic><topic>Error correction</topic><topic>Iterative decoding</topic><topic>low-density parity-check (LDPC) codes</topic><topic>physical-layer security</topic><topic>practical code constructions</topic><topic>Receivers</topic><topic>Security</topic><topic>stopping sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, W. K.</creatorcontrib><creatorcontrib>Almeida, J.</creatorcontrib><creatorcontrib>McLaughlin, S. W.</creatorcontrib><creatorcontrib>Barros, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harrison, W. K.</au><au>Almeida, J.</au><au>McLaughlin, S. W.</au><au>Barros, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding for Cryptographic Security Enhancement Using Stopping Sets</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2011-09</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>575</spage><epage>584</epage><pages>575-584</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>In this paper, we discuss the ability of channel codes to enhance cryptographic secrecy. Toward that end, we present the secrecy metric of degrees of freedom in an attacker's knowledge of the cryptogram, which is similar to equivocation. Using this notion of secrecy, we show how a specific practical channel coding system can be used to hide information about the ciphertext, thus increasing the difficulty of cryptographic attacks. The system setup is the wiretap channel model where transmitted data traverse through independent packet erasure channels (PECs) with public feedback for authenticated automatic repeat-request (ARQ). The code design relies on puncturing nonsystematic low-density parity-check (LDPC) codes with the intent of inflicting an eavesdropper with stopping sets in the decoder. The design amplifies errors when stopping sets occur such that a receiver must guess all the channel-erased bits correctly to avoid an error rate of one half in the ciphertext. We extend previous results on the coding scheme by giving design criteria that reduce the effectiveness of a maximum-likelihood (ML) attack to that of a message-passing (MP) attack. We further extend security analysis to models with multiple receivers and collaborative attackers. Cryptographic security is even enhanced by the system when eavesdroppers have better channel quality than legitimate receivers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2011.2145371</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2011-09, Vol.6 (3), p.575-584
issn 1556-6013
1556-6021
language eng
recordid cdi_proquest_journals_916955940
source IEEE Electronic Library (IEL)
subjects Automatic repeat-request (ARQ)
Channels
Codes
Coding
Complexity theory
Computer information security
Cryptography
Decoding
Design engineering
Encoding
Error correction
Iterative decoding
low-density parity-check (LDPC) codes
physical-layer security
practical code constructions
Receivers
Security
stopping sets
title Coding for Cryptographic Security Enhancement Using Stopping Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20for%20Cryptographic%20Security%20Enhancement%20Using%20Stopping%20Sets&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Harrison,%20W.%20K.&rft.date=2011-09&rft.volume=6&rft.issue=3&rft.spage=575&rft.epage=584&rft.pages=575-584&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2011.2145371&rft_dat=%3Cproquest_RIE%3E919907684%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916955940&rft_id=info:pmid/&rft_ieee_id=5753935&rfr_iscdi=true