A New Concept in Near-Singular Integral Evaluation: The Continuation Approach

The functional homogeneity of Green functions is exploited in the derivation of continuation formulae for the accurate evaluation of near singular integrals. These formulae provide a means of systematically continuing such unconventional integrals as the principal value and finite part integrals of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1989-10, Vol.49 (5), p.1285-1295
Hauptverfasser: Vijayakumar, Sinnathurai, Cormack, Donald E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1295
container_issue 5
container_start_page 1285
container_title SIAM journal on applied mathematics
container_volume 49
creator Vijayakumar, Sinnathurai
Cormack, Donald E.
description The functional homogeneity of Green functions is exploited in the derivation of continuation formulae for the accurate evaluation of near singular integrals. These formulae provide a means of systematically continuing such unconventional integrals as the principal value and finite part integrals of singular functions to conventional integrals of nonsingular functions. A new concept, the notion of continuum integral, which is applicable to singular as well as to nonsingular integrals, is introduced as a generalization of principal value and finite part integrals. Numerical examples are provided that illustrate the computational advantages of the continuation method and give a new perspective on the subtleties of singular and near-singular integrals.
doi_str_mv 10.1137/0149078
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916926009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2102022</jstor_id><sourcerecordid>2102022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-885d1d68970361167a50bcc2c96c20b3ccc6e0817a0db8298c58df70e5ad9ffb3</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKf4D_hQRPCpepesaeLbGFMHUx-c4FtJ03TrqGlNWsX_3oyOPR1397vvPj5CLhHuEFl6DziRkIojMkKQSZwi_TwmIwDGY2RSnpIz77cAiHwiR-RlGr2a32jWWG3aLqpsaJWL3yu77mvlooXtzNqpOpr_qLpXXdXYh2i1MbuLrrLDJJq2rWuU3pyTk1LV3lzs65h8PM5Xs-d4-fa0mE2XsaaMdrEQSYEFFzINroKRVCWQa0215JpCzrTW3IDAVEGRCyqFTkRRpmASVciyzNmYXA-64e13b3yXbZve2fAyk8gl5QAyQLcDpF3jvTNl1rrqS7m_DCHbRZXtowrkzV5Oea3q0imrK3_AOU8EQwjY1YBtfde4w5oiUKCU_QPXKG-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916926009</pqid></control><display><type>article</type><title>A New Concept in Near-Singular Integral Evaluation: The Continuation Approach</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Vijayakumar, Sinnathurai ; Cormack, Donald E.</creator><creatorcontrib>Vijayakumar, Sinnathurai ; Cormack, Donald E.</creatorcontrib><description>The functional homogeneity of Green functions is exploited in the derivation of continuation formulae for the accurate evaluation of near singular integrals. These formulae provide a means of systematically continuing such unconventional integrals as the principal value and finite part integrals of singular functions to conventional integrals of nonsingular functions. A new concept, the notion of continuum integral, which is applicable to singular as well as to nonsingular integrals, is introduced as a generalization of principal value and finite part integrals. Numerical examples are provided that illustrate the computational advantages of the continuation method and give a new perspective on the subtleties of singular and near-singular integrals.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0149078</identifier><identifier>CODEN: SMJMAP</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Boundary element method ; Cauchy mean value theorem ; Embeddings ; Exact sciences and technology ; Gaussian quadratures ; Integrals ; Integrands ; Mathematical functions ; Mathematical integrals ; Mathematical methods in physics ; Mathematical tables ; Numerical approximation and analysis ; Numerical quadratures ; Partial differential equations ; Physics ; Region of integration</subject><ispartof>SIAM journal on applied mathematics, 1989-10, Vol.49 (5), p.1285-1295</ispartof><rights>Copyright 1989 Society for Industrial and Applied Mathematics</rights><rights>1990 INIST-CNRS</rights><rights>[Copyright] © 1989 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-885d1d68970361167a50bcc2c96c20b3ccc6e0817a0db8298c58df70e5ad9ffb3</citedby><cites>FETCH-LOGICAL-c232t-885d1d68970361167a50bcc2c96c20b3ccc6e0817a0db8298c58df70e5ad9ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2102022$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2102022$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6658310$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vijayakumar, Sinnathurai</creatorcontrib><creatorcontrib>Cormack, Donald E.</creatorcontrib><title>A New Concept in Near-Singular Integral Evaluation: The Continuation Approach</title><title>SIAM journal on applied mathematics</title><description>The functional homogeneity of Green functions is exploited in the derivation of continuation formulae for the accurate evaluation of near singular integrals. These formulae provide a means of systematically continuing such unconventional integrals as the principal value and finite part integrals of singular functions to conventional integrals of nonsingular functions. A new concept, the notion of continuum integral, which is applicable to singular as well as to nonsingular integrals, is introduced as a generalization of principal value and finite part integrals. Numerical examples are provided that illustrate the computational advantages of the continuation method and give a new perspective on the subtleties of singular and near-singular integrals.</description><subject>Boundary element method</subject><subject>Cauchy mean value theorem</subject><subject>Embeddings</subject><subject>Exact sciences and technology</subject><subject>Gaussian quadratures</subject><subject>Integrals</subject><subject>Integrands</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Mathematical methods in physics</subject><subject>Mathematical tables</subject><subject>Numerical approximation and analysis</subject><subject>Numerical quadratures</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Region of integration</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kNFLwzAQxoMoOKf4D_hQRPCpepesaeLbGFMHUx-c4FtJ03TrqGlNWsX_3oyOPR1397vvPj5CLhHuEFl6DziRkIojMkKQSZwi_TwmIwDGY2RSnpIz77cAiHwiR-RlGr2a32jWWG3aLqpsaJWL3yu77mvlooXtzNqpOpr_qLpXXdXYh2i1MbuLrrLDJJq2rWuU3pyTk1LV3lzs65h8PM5Xs-d4-fa0mE2XsaaMdrEQSYEFFzINroKRVCWQa0215JpCzrTW3IDAVEGRCyqFTkRRpmASVciyzNmYXA-64e13b3yXbZve2fAyk8gl5QAyQLcDpF3jvTNl1rrqS7m_DCHbRZXtowrkzV5Oea3q0imrK3_AOU8EQwjY1YBtfde4w5oiUKCU_QPXKG-O</recordid><startdate>19891001</startdate><enddate>19891001</enddate><creator>Vijayakumar, Sinnathurai</creator><creator>Cormack, Donald E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19891001</creationdate><title>A New Concept in Near-Singular Integral Evaluation: The Continuation Approach</title><author>Vijayakumar, Sinnathurai ; Cormack, Donald E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-885d1d68970361167a50bcc2c96c20b3ccc6e0817a0db8298c58df70e5ad9ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Boundary element method</topic><topic>Cauchy mean value theorem</topic><topic>Embeddings</topic><topic>Exact sciences and technology</topic><topic>Gaussian quadratures</topic><topic>Integrals</topic><topic>Integrands</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Mathematical methods in physics</topic><topic>Mathematical tables</topic><topic>Numerical approximation and analysis</topic><topic>Numerical quadratures</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Region of integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayakumar, Sinnathurai</creatorcontrib><creatorcontrib>Cormack, Donald E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayakumar, Sinnathurai</au><au>Cormack, Donald E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Concept in Near-Singular Integral Evaluation: The Continuation Approach</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1989-10-01</date><risdate>1989</risdate><volume>49</volume><issue>5</issue><spage>1285</spage><epage>1295</epage><pages>1285-1295</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><coden>SMJMAP</coden><abstract>The functional homogeneity of Green functions is exploited in the derivation of continuation formulae for the accurate evaluation of near singular integrals. These formulae provide a means of systematically continuing such unconventional integrals as the principal value and finite part integrals of singular functions to conventional integrals of nonsingular functions. A new concept, the notion of continuum integral, which is applicable to singular as well as to nonsingular integrals, is introduced as a generalization of principal value and finite part integrals. Numerical examples are provided that illustrate the computational advantages of the continuation method and give a new perspective on the subtleties of singular and near-singular integrals.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0149078</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1989-10, Vol.49 (5), p.1285-1295
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_916926009
source Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics
subjects Boundary element method
Cauchy mean value theorem
Embeddings
Exact sciences and technology
Gaussian quadratures
Integrals
Integrands
Mathematical functions
Mathematical integrals
Mathematical methods in physics
Mathematical tables
Numerical approximation and analysis
Numerical quadratures
Partial differential equations
Physics
Region of integration
title A New Concept in Near-Singular Integral Evaluation: The Continuation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Concept%20in%20Near-Singular%20Integral%20Evaluation:%20The%20Continuation%20Approach&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Vijayakumar,%20Sinnathurai&rft.date=1989-10-01&rft.volume=49&rft.issue=5&rft.spage=1285&rft.epage=1295&rft.pages=1285-1295&rft.issn=0036-1399&rft.eissn=1095-712X&rft.coden=SMJMAP&rft_id=info:doi/10.1137/0149078&rft_dat=%3Cjstor_proqu%3E2102022%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916926009&rft_id=info:pmid/&rft_jstor_id=2102022&rfr_iscdi=true