Reconstruction of a Spherically Symmetric Speed of Sound
Consider the inverse acoustic scattering problem for a spherically symmetric inhomogeneity of compact support that arises, among other places, in nondestructive testing. Define the corresponding homogeneous and inhomogeneous interior transmission problems, see, e.g., [D. Colton and P. Monk, Quart. J...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 1994-10, Vol.54 (5), p.1203-1223 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1223 |
---|---|
container_issue | 5 |
container_start_page | 1203 |
container_title | SIAM journal on applied mathematics |
container_volume | 54 |
creator | McLaughlin, Joyce R. Polyakov, Peter L. Sacks, Paul E. |
description | Consider the inverse acoustic scattering problem for a spherically symmetric inhomogeneity of compact support that arises, among other places, in nondestructive testing. Define the corresponding homogeneous and inhomogeneous interior transmission problems, see, e.g., [D. Colton and P. Monk, Quart. J. Mech. Math., 41 (1988), pp. 97-125]. Here the authors study the subset of transmission eigenvalues corresponding to spherically symmetric eigenfunctions of the homogeneous interior transmission problem. It is shown in McLaughlin and Polyakov [J. Differential Equations, to appear] that these eigenvalues are the zeros of an average of the scattering amplitude, and a uniqueness theorem for the inverse acoustic scattering problem is presented where these eigenvalues are the given data. In the present paper an algorithm for finding the solution of the inverse acoustic scattering problem from this subset of transmission eigenvalues is developed and implemented. The method given here completely determines the sound speed when the size, measured by an integral, satisfies a particular bound. The algorithm is based on the Gel'fand-Levitan integral equation method [I. M. Gelfand and B. M. Levitan, Amer. Math. Soc. Trans., 1 (1951), pp. 253-304], [W. Rundell and P. E. Sacks, Inverse Problems, 8 (1992), pp. 457-482]. |
doi_str_mv | 10.1137/S0036139992238218 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916750381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2102465</jstor_id><sourcerecordid>2102465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2498-c02b17454d39c09a51bf586a028d539effc059ca5adb33635740abaf31ae21d73</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMouK7-AMFD8V6dyTRtcpRFV2FBsAreSpomuMtusybtof_elooXT8PM-948eIxdI9whUnFfAlCOpJTinCRHecIWCEqkBfLPU7aY5HTSz9lFjDsAxDxTCybfrPFt7EJvuq1vE-8SnZTHLxu2Ru_3Q1IOh4Ptxm28WttMQOn7trlkZ07vo736nUv28fT4vnpON6_rl9XDJjU8UzI1wGssMpE1pAwoLbB2QuYauGwEKeucAaGMFrqpiXISRQa61o5QW45NQUt2O_89Bv_d29hVO9-HdoysFOaFAJI4QjhDJvgYg3XVMWwPOgwVQjX1U_3rZ_TczJ5d7Hz4M3AEnuWCfgCI1WAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916750381</pqid></control><display><type>article</type><title>Reconstruction of a Spherically Symmetric Speed of Sound</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>McLaughlin, Joyce R. ; Polyakov, Peter L. ; Sacks, Paul E.</creator><creatorcontrib>McLaughlin, Joyce R. ; Polyakov, Peter L. ; Sacks, Paul E.</creatorcontrib><description>Consider the inverse acoustic scattering problem for a spherically symmetric inhomogeneity of compact support that arises, among other places, in nondestructive testing. Define the corresponding homogeneous and inhomogeneous interior transmission problems, see, e.g., [D. Colton and P. Monk, Quart. J. Mech. Math., 41 (1988), pp. 97-125]. Here the authors study the subset of transmission eigenvalues corresponding to spherically symmetric eigenfunctions of the homogeneous interior transmission problem. It is shown in McLaughlin and Polyakov [J. Differential Equations, to appear] that these eigenvalues are the zeros of an average of the scattering amplitude, and a uniqueness theorem for the inverse acoustic scattering problem is presented where these eigenvalues are the given data. In the present paper an algorithm for finding the solution of the inverse acoustic scattering problem from this subset of transmission eigenvalues is developed and implemented. The method given here completely determines the sound speed when the size, measured by an integral, satisfies a particular bound. The algorithm is based on the Gel'fand-Levitan integral equation method [I. M. Gelfand and B. M. Levitan, Amer. Math. Soc. Trans., 1 (1951), pp. 253-304], [W. Rundell and P. E. Sacks, Inverse Problems, 8 (1992), pp. 457-482].</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/S0036139992238218</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Acoustics ; Applied mathematics ; Boundary value problems ; Differential equations ; Eigenvalues ; Inverse problems ; Nondestructive testing ; Scattering amplitude ; Sine function ; Sound transmission ; Spectral reconnaissance ; Supersonic transport ; Variables</subject><ispartof>SIAM journal on applied mathematics, 1994-10, Vol.54 (5), p.1203-1223</ispartof><rights>Copyright 1994 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1994 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2498-c02b17454d39c09a51bf586a028d539effc059ca5adb33635740abaf31ae21d73</citedby><cites>FETCH-LOGICAL-c2498-c02b17454d39c09a51bf586a028d539effc059ca5adb33635740abaf31ae21d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2102465$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2102465$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,3186,27926,27927,58019,58023,58252,58256</link.rule.ids></links><search><creatorcontrib>McLaughlin, Joyce R.</creatorcontrib><creatorcontrib>Polyakov, Peter L.</creatorcontrib><creatorcontrib>Sacks, Paul E.</creatorcontrib><title>Reconstruction of a Spherically Symmetric Speed of Sound</title><title>SIAM journal on applied mathematics</title><description>Consider the inverse acoustic scattering problem for a spherically symmetric inhomogeneity of compact support that arises, among other places, in nondestructive testing. Define the corresponding homogeneous and inhomogeneous interior transmission problems, see, e.g., [D. Colton and P. Monk, Quart. J. Mech. Math., 41 (1988), pp. 97-125]. Here the authors study the subset of transmission eigenvalues corresponding to spherically symmetric eigenfunctions of the homogeneous interior transmission problem. It is shown in McLaughlin and Polyakov [J. Differential Equations, to appear] that these eigenvalues are the zeros of an average of the scattering amplitude, and a uniqueness theorem for the inverse acoustic scattering problem is presented where these eigenvalues are the given data. In the present paper an algorithm for finding the solution of the inverse acoustic scattering problem from this subset of transmission eigenvalues is developed and implemented. The method given here completely determines the sound speed when the size, measured by an integral, satisfies a particular bound. The algorithm is based on the Gel'fand-Levitan integral equation method [I. M. Gelfand and B. M. Levitan, Amer. Math. Soc. Trans., 1 (1951), pp. 253-304], [W. Rundell and P. E. Sacks, Inverse Problems, 8 (1992), pp. 457-482].</description><subject>Acoustics</subject><subject>Applied mathematics</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Inverse problems</subject><subject>Nondestructive testing</subject><subject>Scattering amplitude</subject><subject>Sine function</subject><subject>Sound transmission</subject><subject>Spectral reconnaissance</subject><subject>Supersonic transport</subject><subject>Variables</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEFLxDAQhYMouK7-AMFD8V6dyTRtcpRFV2FBsAreSpomuMtusybtof_elooXT8PM-948eIxdI9whUnFfAlCOpJTinCRHecIWCEqkBfLPU7aY5HTSz9lFjDsAxDxTCybfrPFt7EJvuq1vE-8SnZTHLxu2Ru_3Q1IOh4Ptxm28WttMQOn7trlkZ07vo736nUv28fT4vnpON6_rl9XDJjU8UzI1wGssMpE1pAwoLbB2QuYauGwEKeucAaGMFrqpiXISRQa61o5QW45NQUt2O_89Bv_d29hVO9-HdoysFOaFAJI4QjhDJvgYg3XVMWwPOgwVQjX1U_3rZ_TczJ5d7Hz4M3AEnuWCfgCI1WAc</recordid><startdate>19941001</startdate><enddate>19941001</enddate><creator>McLaughlin, Joyce R.</creator><creator>Polyakov, Peter L.</creator><creator>Sacks, Paul E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19941001</creationdate><title>Reconstruction of a Spherically Symmetric Speed of Sound</title><author>McLaughlin, Joyce R. ; Polyakov, Peter L. ; Sacks, Paul E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2498-c02b17454d39c09a51bf586a028d539effc059ca5adb33635740abaf31ae21d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Acoustics</topic><topic>Applied mathematics</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Inverse problems</topic><topic>Nondestructive testing</topic><topic>Scattering amplitude</topic><topic>Sine function</topic><topic>Sound transmission</topic><topic>Spectral reconnaissance</topic><topic>Supersonic transport</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaughlin, Joyce R.</creatorcontrib><creatorcontrib>Polyakov, Peter L.</creatorcontrib><creatorcontrib>Sacks, Paul E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLaughlin, Joyce R.</au><au>Polyakov, Peter L.</au><au>Sacks, Paul E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of a Spherically Symmetric Speed of Sound</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1994-10-01</date><risdate>1994</risdate><volume>54</volume><issue>5</issue><spage>1203</spage><epage>1223</epage><pages>1203-1223</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>Consider the inverse acoustic scattering problem for a spherically symmetric inhomogeneity of compact support that arises, among other places, in nondestructive testing. Define the corresponding homogeneous and inhomogeneous interior transmission problems, see, e.g., [D. Colton and P. Monk, Quart. J. Mech. Math., 41 (1988), pp. 97-125]. Here the authors study the subset of transmission eigenvalues corresponding to spherically symmetric eigenfunctions of the homogeneous interior transmission problem. It is shown in McLaughlin and Polyakov [J. Differential Equations, to appear] that these eigenvalues are the zeros of an average of the scattering amplitude, and a uniqueness theorem for the inverse acoustic scattering problem is presented where these eigenvalues are the given data. In the present paper an algorithm for finding the solution of the inverse acoustic scattering problem from this subset of transmission eigenvalues is developed and implemented. The method given here completely determines the sound speed when the size, measured by an integral, satisfies a particular bound. The algorithm is based on the Gel'fand-Levitan integral equation method [I. M. Gelfand and B. M. Levitan, Amer. Math. Soc. Trans., 1 (1951), pp. 253-304], [W. Rundell and P. E. Sacks, Inverse Problems, 8 (1992), pp. 457-482].</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036139992238218</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 1994-10, Vol.54 (5), p.1203-1223 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916750381 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Acoustics Applied mathematics Boundary value problems Differential equations Eigenvalues Inverse problems Nondestructive testing Scattering amplitude Sine function Sound transmission Spectral reconnaissance Supersonic transport Variables |
title | Reconstruction of a Spherically Symmetric Speed of Sound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20a%20Spherically%20Symmetric%20Speed%20of%20Sound&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=McLaughlin,%20Joyce%20R.&rft.date=1994-10-01&rft.volume=54&rft.issue=5&rft.spage=1203&rft.epage=1223&rft.pages=1203-1223&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/S0036139992238218&rft_dat=%3Cjstor_proqu%3E2102465%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916750381&rft_id=info:pmid/&rft_jstor_id=2102465&rfr_iscdi=true |