Multigrid Smoothers for Ultraparallel Computing

This paper investigates the properties of smoothers in the context of algebraic multigrid (AMG) running on parallel computers with potentially millions of processors. The development of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such as the Gauss-Se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2011-01, Vol.33 (5), p.2864-2887
Hauptverfasser: Baker, Allison H., Falgout, Robert D., Kolev, Tzanio V., Yang, Ulrike Meier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2887
container_issue 5
container_start_page 2864
container_title SIAM journal on scientific computing
container_volume 33
creator Baker, Allison H.
Falgout, Robert D.
Kolev, Tzanio V.
Yang, Ulrike Meier
description This paper investigates the properties of smoothers in the context of algebraic multigrid (AMG) running on parallel computers with potentially millions of processors. The development of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such as the Gauss-Seidel (GS) algorithm, are inherently sequential. Based on the sharp two-grid multigrid theory from [R. D. Falgout and P. S. Vassilevski, SIAM J. Numer. Anal., 42 (2004), pp. 1669-1693] and [R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, Numer. Linear Algebra Appl., 12 (2005), pp. 471-494] we characterize the smoothing properties of a number of practical candidates for parallel smoothers, including several $C$-$F$, polynomial, and hybrid schemes. We show, in particular, that the popular hybrid GS algorithm has multigrid smoothing properties which are independent of the number of processors in many practical applications, provided that the problem size per processor is large enough. This is encouraging news for the scalability of AMG on ultraparallel computers. We also introduce the more robust $\ell_1$ smoothers, which are always convergent and have already proven essential for the parallel solution of some electromagnetic problems [T. Kolev and P. Vassilevski, J. Comput. Math., 27 (2009), pp. 604-623].
doi_str_mv 10.1137/100798806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_916604504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563709841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b5a893b1aa6757bd730359929e719a704ce49ac36e0824d8b68301ddff2bcf5d3</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqUw8A8iNobQ1_H3iCIoSEUM0NlyYrukSupgOwP_nlRFTHfDo7vTIXSL4QFjIlYYQCgpgZ-hBQbFSoGVOD96TktZCXaJrlLaA2BOVbVAq7epz90udrb4GELIXy6mwodYbPsczWii6XvXF3UYxil3h901uvCmT-7mT5do-_z0Wb-Um_f1a_24KVvCRC4bZqQiDTaGCyYaKwgQplSl3LzHCKCto8q0hDuQFbWy4ZIAttb7qmk9s2SJ7k65Ywzfk0tZ78MUD3OlVphzoAzoDN2foDaGlKLzeozdYOKPxqCPd-j_O8gvmpdQlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916604504</pqid></control><display><type>article</type><title>Multigrid Smoothers for Ultraparallel Computing</title><source>SIAM Journals Online</source><creator>Baker, Allison H. ; Falgout, Robert D. ; Kolev, Tzanio V. ; Yang, Ulrike Meier</creator><creatorcontrib>Baker, Allison H. ; Falgout, Robert D. ; Kolev, Tzanio V. ; Yang, Ulrike Meier</creatorcontrib><description>This paper investigates the properties of smoothers in the context of algebraic multigrid (AMG) running on parallel computers with potentially millions of processors. The development of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such as the Gauss-Seidel (GS) algorithm, are inherently sequential. Based on the sharp two-grid multigrid theory from [R. D. Falgout and P. S. Vassilevski, SIAM J. Numer. Anal., 42 (2004), pp. 1669-1693] and [R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, Numer. Linear Algebra Appl., 12 (2005), pp. 471-494] we characterize the smoothing properties of a number of practical candidates for parallel smoothers, including several $C$-$F$, polynomial, and hybrid schemes. We show, in particular, that the popular hybrid GS algorithm has multigrid smoothing properties which are independent of the number of processors in many practical applications, provided that the problem size per processor is large enough. This is encouraging news for the scalability of AMG on ultraparallel computers. We also introduce the more robust $\ell_1$ smoothers, which are always convergent and have already proven essential for the parallel solution of some electromagnetic problems [T. Kolev and P. Vassilevski, J. Comput. Math., 27 (2009), pp. 604-623].</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/100798806</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Eigenvalues ; Eigenvectors ; Laboratories ; Linear algebra</subject><ispartof>SIAM journal on scientific computing, 2011-01, Vol.33 (5), p.2864-2887</ispartof><rights>[Copyright] © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b5a893b1aa6757bd730359929e719a704ce49ac36e0824d8b68301ddff2bcf5d3</citedby><cites>FETCH-LOGICAL-c357t-b5a893b1aa6757bd730359929e719a704ce49ac36e0824d8b68301ddff2bcf5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Baker, Allison H.</creatorcontrib><creatorcontrib>Falgout, Robert D.</creatorcontrib><creatorcontrib>Kolev, Tzanio V.</creatorcontrib><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><title>Multigrid Smoothers for Ultraparallel Computing</title><title>SIAM journal on scientific computing</title><description>This paper investigates the properties of smoothers in the context of algebraic multigrid (AMG) running on parallel computers with potentially millions of processors. The development of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such as the Gauss-Seidel (GS) algorithm, are inherently sequential. Based on the sharp two-grid multigrid theory from [R. D. Falgout and P. S. Vassilevski, SIAM J. Numer. Anal., 42 (2004), pp. 1669-1693] and [R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, Numer. Linear Algebra Appl., 12 (2005), pp. 471-494] we characterize the smoothing properties of a number of practical candidates for parallel smoothers, including several $C$-$F$, polynomial, and hybrid schemes. We show, in particular, that the popular hybrid GS algorithm has multigrid smoothing properties which are independent of the number of processors in many practical applications, provided that the problem size per processor is large enough. This is encouraging news for the scalability of AMG on ultraparallel computers. We also introduce the more robust $\ell_1$ smoothers, which are always convergent and have already proven essential for the parallel solution of some electromagnetic problems [T. Kolev and P. Vassilevski, J. Comput. Math., 27 (2009), pp. 604-623].</description><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Laboratories</subject><subject>Linear algebra</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kD1PwzAYhC0EEqUw8A8iNobQ1_H3iCIoSEUM0NlyYrukSupgOwP_nlRFTHfDo7vTIXSL4QFjIlYYQCgpgZ-hBQbFSoGVOD96TktZCXaJrlLaA2BOVbVAq7epz90udrb4GELIXy6mwodYbPsczWii6XvXF3UYxil3h901uvCmT-7mT5do-_z0Wb-Um_f1a_24KVvCRC4bZqQiDTaGCyYaKwgQplSl3LzHCKCto8q0hDuQFbWy4ZIAttb7qmk9s2SJ7k65Ywzfk0tZ78MUD3OlVphzoAzoDN2foDaGlKLzeozdYOKPxqCPd-j_O8gvmpdQlA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Baker, Allison H.</creator><creator>Falgout, Robert D.</creator><creator>Kolev, Tzanio V.</creator><creator>Yang, Ulrike Meier</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Multigrid Smoothers for Ultraparallel Computing</title><author>Baker, Allison H. ; Falgout, Robert D. ; Kolev, Tzanio V. ; Yang, Ulrike Meier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b5a893b1aa6757bd730359929e719a704ce49ac36e0824d8b68301ddff2bcf5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Laboratories</topic><topic>Linear algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Allison H.</creatorcontrib><creatorcontrib>Falgout, Robert D.</creatorcontrib><creatorcontrib>Kolev, Tzanio V.</creatorcontrib><creatorcontrib>Yang, Ulrike Meier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Allison H.</au><au>Falgout, Robert D.</au><au>Kolev, Tzanio V.</au><au>Yang, Ulrike Meier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid Smoothers for Ultraparallel Computing</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>33</volume><issue>5</issue><spage>2864</spage><epage>2887</epage><pages>2864-2887</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>This paper investigates the properties of smoothers in the context of algebraic multigrid (AMG) running on parallel computers with potentially millions of processors. The development of multigrid smoothers in this case is challenging, because some of the best relaxation schemes, such as the Gauss-Seidel (GS) algorithm, are inherently sequential. Based on the sharp two-grid multigrid theory from [R. D. Falgout and P. S. Vassilevski, SIAM J. Numer. Anal., 42 (2004), pp. 1669-1693] and [R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov, Numer. Linear Algebra Appl., 12 (2005), pp. 471-494] we characterize the smoothing properties of a number of practical candidates for parallel smoothers, including several $C$-$F$, polynomial, and hybrid schemes. We show, in particular, that the popular hybrid GS algorithm has multigrid smoothing properties which are independent of the number of processors in many practical applications, provided that the problem size per processor is large enough. This is encouraging news for the scalability of AMG on ultraparallel computers. We also introduce the more robust $\ell_1$ smoothers, which are always convergent and have already proven essential for the parallel solution of some electromagnetic problems [T. Kolev and P. Vassilevski, J. Comput. Math., 27 (2009), pp. 604-623].</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100798806</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2011-01, Vol.33 (5), p.2864-2887
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_916604504
source SIAM Journals Online
subjects Eigenvalues
Eigenvectors
Laboratories
Linear algebra
title Multigrid Smoothers for Ultraparallel Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20Smoothers%20for%20Ultraparallel%20Computing&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Baker,%20Allison%20H.&rft.date=2011-01-01&rft.volume=33&rft.issue=5&rft.spage=2864&rft.epage=2887&rft.pages=2864-2887&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/100798806&rft_dat=%3Cproquest_cross%3E2563709841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916604504&rft_id=info:pmid/&rfr_iscdi=true