Dynamics of Free Surfaces in Random Porous Media
We consider free surface flow in random porous media by treating hydraulic conductivity of a medium as a random field with known statistics. We start by recasting the boundary-value problem in the form of an integral equation where the parameters and domain of integration are random. Our analysis of...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2001, Vol.61 (6), p.1857-1876 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1876 |
---|---|
container_issue | 6 |
container_start_page | 1857 |
container_title | SIAM journal on applied mathematics |
container_volume | 61 |
creator | Tartakovsky, Daniel M. Winter, C. L. |
description | We consider free surface flow in random porous media by treating hydraulic conductivity of a medium as a random field with known statistics. We start by recasting the boundary-value problem in the form of an integral equation where the parameters and domain of integration are random. Our analysis of this equation consists of expanding the random integrals in Taylor's series about the mean position of the free boundary and taking the ensemble mean. To quantify the uncertainty associated with such predictions, we also develop a set of integro-differential equations satisfied by the corresponding second ensemble moments. The resulting moment equations require closure approximations to be workable. We derive such closures by means of perturbation expansions in powers of the variance of the logarithm of hydraulic conductivity. Though this formally limits our solutions to mildly heterogeneous porous media, our analytical solutions for one-dimensional flows demonstrate that such perturbation expansions may remain robust for relatively large values of the variance of the logarithm of hydraulic conductivity. |
doi_str_mv | 10.1137/S0036139999358180 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916550285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3061876</jstor_id><sourcerecordid>3061876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5388199e400c09a9c05731b4ecfe2312b7ae5826c9ecb7ae164674b6afe566b53</originalsourceid><addsrcrecordid>eNplkEFLxDAQhYMouK7-AMFD8F6daZo0OcrqqrCiuAreSpqdQovbrEl72H-_LRUvzmUG3vtmhsfYJcINoshv1wBCoTBDCalRwxGbIRiZ5Jh-HbPZKCejfsrOYmwAEFVmZgzu963d1i5yX_FlIOLrPlTWUeR1y99tu_Fb_uaD7yN_oU1tz9lJZb8jXfz2OftcPnwsnpLV6-Pz4m6VuNRgl0ihNRpDGYADY40DmQssM3IVpQLTMrckdaqcITfOwzcqz0plK5JKlVLM2fW0dxf8T0-xKxrfh3Y4WRhUUkKqRxNOJhd8jIGqYhfqrQ37AqEYcyn-5TIwVxPTxM6HP0CAQp0rcQArlVxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916550285</pqid></control><display><type>article</type><title>Dynamics of Free Surfaces in Random Porous Media</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics & Statistics</source><creator>Tartakovsky, Daniel M. ; Winter, C. L.</creator><creatorcontrib>Tartakovsky, Daniel M. ; Winter, C. L.</creatorcontrib><description>We consider free surface flow in random porous media by treating hydraulic conductivity of a medium as a random field with known statistics. We start by recasting the boundary-value problem in the form of an integral equation where the parameters and domain of integration are random. Our analysis of this equation consists of expanding the random integrals in Taylor's series about the mean position of the free boundary and taking the ensemble mean. To quantify the uncertainty associated with such predictions, we also develop a set of integro-differential equations satisfied by the corresponding second ensemble moments. The resulting moment equations require closure approximations to be workable. We derive such closures by means of perturbation expansions in powers of the variance of the logarithm of hydraulic conductivity. Though this formally limits our solutions to mildly heterogeneous porous media, our analytical solutions for one-dimensional flows demonstrate that such perturbation expansions may remain robust for relatively large values of the variance of the logarithm of hydraulic conductivity.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/S0036139999358180</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Aquifers ; Boundary conditions ; Determinism ; Hydraulic conductivity ; Hydraulics ; Hydrology ; Laboratories ; Linearization ; Oil recovery ; Porous materials ; Statistical variance ; Taylor series ; Wetting front</subject><ispartof>SIAM journal on applied mathematics, 2001, Vol.61 (6), p.1857-1876</ispartof><rights>Copyright 2001 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2001 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5388199e400c09a9c05731b4ecfe2312b7ae5826c9ecb7ae164674b6afe566b53</citedby><cites>FETCH-LOGICAL-c291t-5388199e400c09a9c05731b4ecfe2312b7ae5826c9ecb7ae164674b6afe566b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3061876$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3061876$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><creatorcontrib>Winter, C. L.</creatorcontrib><title>Dynamics of Free Surfaces in Random Porous Media</title><title>SIAM journal on applied mathematics</title><description>We consider free surface flow in random porous media by treating hydraulic conductivity of a medium as a random field with known statistics. We start by recasting the boundary-value problem in the form of an integral equation where the parameters and domain of integration are random. Our analysis of this equation consists of expanding the random integrals in Taylor's series about the mean position of the free boundary and taking the ensemble mean. To quantify the uncertainty associated with such predictions, we also develop a set of integro-differential equations satisfied by the corresponding second ensemble moments. The resulting moment equations require closure approximations to be workable. We derive such closures by means of perturbation expansions in powers of the variance of the logarithm of hydraulic conductivity. Though this formally limits our solutions to mildly heterogeneous porous media, our analytical solutions for one-dimensional flows demonstrate that such perturbation expansions may remain robust for relatively large values of the variance of the logarithm of hydraulic conductivity.</description><subject>Approximation</subject><subject>Aquifers</subject><subject>Boundary conditions</subject><subject>Determinism</subject><subject>Hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Laboratories</subject><subject>Linearization</subject><subject>Oil recovery</subject><subject>Porous materials</subject><subject>Statistical variance</subject><subject>Taylor series</subject><subject>Wetting front</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEFLxDAQhYMouK7-AMFD8F6daZo0OcrqqrCiuAreSpqdQovbrEl72H-_LRUvzmUG3vtmhsfYJcINoshv1wBCoTBDCalRwxGbIRiZ5Jh-HbPZKCejfsrOYmwAEFVmZgzu963d1i5yX_FlIOLrPlTWUeR1y99tu_Fb_uaD7yN_oU1tz9lJZb8jXfz2OftcPnwsnpLV6-Pz4m6VuNRgl0ihNRpDGYADY40DmQssM3IVpQLTMrckdaqcITfOwzcqz0plK5JKlVLM2fW0dxf8T0-xKxrfh3Y4WRhUUkKqRxNOJhd8jIGqYhfqrQ37AqEYcyn-5TIwVxPTxM6HP0CAQp0rcQArlVxw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Tartakovsky, Daniel M.</creator><creator>Winter, C. L.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>2001</creationdate><title>Dynamics of Free Surfaces in Random Porous Media</title><author>Tartakovsky, Daniel M. ; Winter, C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5388199e400c09a9c05731b4ecfe2312b7ae5826c9ecb7ae164674b6afe566b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximation</topic><topic>Aquifers</topic><topic>Boundary conditions</topic><topic>Determinism</topic><topic>Hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Laboratories</topic><topic>Linearization</topic><topic>Oil recovery</topic><topic>Porous materials</topic><topic>Statistical variance</topic><topic>Taylor series</topic><topic>Wetting front</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tartakovsky, Daniel M.</creatorcontrib><creatorcontrib>Winter, C. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tartakovsky, Daniel M.</au><au>Winter, C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Free Surfaces in Random Porous Media</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2001</date><risdate>2001</risdate><volume>61</volume><issue>6</issue><spage>1857</spage><epage>1876</epage><pages>1857-1876</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>We consider free surface flow in random porous media by treating hydraulic conductivity of a medium as a random field with known statistics. We start by recasting the boundary-value problem in the form of an integral equation where the parameters and domain of integration are random. Our analysis of this equation consists of expanding the random integrals in Taylor's series about the mean position of the free boundary and taking the ensemble mean. To quantify the uncertainty associated with such predictions, we also develop a set of integro-differential equations satisfied by the corresponding second ensemble moments. The resulting moment equations require closure approximations to be workable. We derive such closures by means of perturbation expansions in powers of the variance of the logarithm of hydraulic conductivity. Though this formally limits our solutions to mildly heterogeneous porous media, our analytical solutions for one-dimensional flows demonstrate that such perturbation expansions may remain robust for relatively large values of the variance of the logarithm of hydraulic conductivity.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036139999358180</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2001, Vol.61 (6), p.1857-1876 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916550285 |
source | Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics |
subjects | Approximation Aquifers Boundary conditions Determinism Hydraulic conductivity Hydraulics Hydrology Laboratories Linearization Oil recovery Porous materials Statistical variance Taylor series Wetting front |
title | Dynamics of Free Surfaces in Random Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Free%20Surfaces%20in%20Random%20Porous%20Media&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Tartakovsky,%20Daniel%20M.&rft.date=2001&rft.volume=61&rft.issue=6&rft.spage=1857&rft.epage=1876&rft.pages=1857-1876&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/S0036139999358180&rft_dat=%3Cjstor_proqu%3E3061876%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916550285&rft_id=info:pmid/&rft_jstor_id=3061876&rfr_iscdi=true |