Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media

This paper investigates the pressure field generated at the bottom of a high-contrast randomly layered slab by an acoustical pulse emitted at the surface of the slab. This analysis takes place in the framework introduced by Asch et al. [SIAM Rev., 33 (1991), pp. 519-625], where the incident pulse wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1998-10, Vol.58 (5), p.1532-1546
Hauptverfasser: Chillan, J., Fouque, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1546
container_issue 5
container_start_page 1532
container_title SIAM journal on applied mathematics
container_volume 58
creator Chillan, J.
Fouque, J. P.
description This paper investigates the pressure field generated at the bottom of a high-contrast randomly layered slab by an acoustical pulse emitted at the surface of the slab. This analysis takes place in the framework introduced by Asch et al. [SIAM Rev., 33 (1991), pp. 519-625], where the incident pulse wave length is long compared to the correlation length of the random inhomogeneities but short compared to the size of the slab. This problem has been studied in the one-dimensional case simultaneously by Clouet and Fouque [Ann. Appl. Probab., 4 (1994), pp. 1083-1097] and Lewicki, Burridge, and Papanicolaou [Wave Motion, 20 (1994), pp. 177-195] and also for multimode plane wave pulses by Lewicki, Burridge, and De Hoop [SIAM J. Appl. Math., 56 (1996), pp. 256-276]. These situations require only the use of classical diffusion-approximation results whereas the point-source problem studied in this paper requires a nontrivial combination of diffusion-approximation results with stationary phase methods. The stationary phase method has been used by De Hoop, Chang, and Burridge [Geophys. J. Int., 104 (1991), pp. 489-506] for weakly fluctuating media and by Asch et al. for the study of the reflected pressure. The main statement of this paper is that, in order to simultaneously apply diffusion-approximation and stationary phase results, it is correct to apply them consecutively. We believe that this situation will be encountered again and again in this field and the goal of this paper is to present a clear statement in the most simple case of an acoustical pulse propagating in a randomly layered medium. In that case, the main result gives a formula describing the spreading of the pulse around its arrival time at the bottom of the slab which is obviously not contained in the classical geometrical acoustic approximation.
doi_str_mv 10.1137/s0036139996310789
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916370340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>118360</jstor_id><sourcerecordid>118360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-3feb0356e3822ee94e3d82287b310095937e03eb134fd9adfd5672f2c0de97673</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRsFY_gHhZvEdnM-lu9liKrULFoBW8hU12UlLSpO4mh3x7t1QQPM3Ae7_58xi7FfAgBKpHD4BSoNZaogCV6jM2EaBnkRLx1zmbHOXoqF-yK-93AELIRE_YJnPk_eCIL2tqrOcrasmZniwvRj4vu8H3dWkang2NJ88z1x3M1vR1u-V1y99Na7t9M_K1GckF6JVsba7ZRWWC_ea3Ttnn8mmzeI7Wb6uXxXwdlbGGPsKKCsCZJEzjmEgnhDZ0qSrCC-F2jYoAqRCYVFYbW9mZVHEVl2BJK6lwyu5Pcw-u-x7I9_muG1wbVuZaSFSACQSTOJlK13nvqMoPrt4bN-YC8mN2-cf_7AJzd2J2vu_cHyBSlIA_YCJqGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916370340</pqid></control><display><type>article</type><title>Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media</title><source>SIAM Journals Online</source><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><creator>Chillan, J. ; Fouque, J. P.</creator><creatorcontrib>Chillan, J. ; Fouque, J. P.</creatorcontrib><description>This paper investigates the pressure field generated at the bottom of a high-contrast randomly layered slab by an acoustical pulse emitted at the surface of the slab. This analysis takes place in the framework introduced by Asch et al. [SIAM Rev., 33 (1991), pp. 519-625], where the incident pulse wave length is long compared to the correlation length of the random inhomogeneities but short compared to the size of the slab. This problem has been studied in the one-dimensional case simultaneously by Clouet and Fouque [Ann. Appl. Probab., 4 (1994), pp. 1083-1097] and Lewicki, Burridge, and Papanicolaou [Wave Motion, 20 (1994), pp. 177-195] and also for multimode plane wave pulses by Lewicki, Burridge, and De Hoop [SIAM J. Appl. Math., 56 (1996), pp. 256-276]. These situations require only the use of classical diffusion-approximation results whereas the point-source problem studied in this paper requires a nontrivial combination of diffusion-approximation results with stationary phase methods. The stationary phase method has been used by De Hoop, Chang, and Burridge [Geophys. J. Int., 104 (1991), pp. 489-506] for weakly fluctuating media and by Asch et al. for the study of the reflected pressure. The main statement of this paper is that, in order to simultaneously apply diffusion-approximation and stationary phase results, it is correct to apply them consecutively. We believe that this situation will be encountered again and again in this field and the goal of this paper is to present a clear statement in the most simple case of an acoustical pulse propagating in a randomly layered medium. In that case, the main result gives a formula describing the spreading of the pulse around its arrival time at the bottom of the slab which is obviously not contained in the classical geometrical acoustic approximation.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/s0036139996310789</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Acoustics ; Applied mathematics ; Approximation ; Coefficients ; Determinism ; Geometrical acoustics ; Inhomogeneity ; Mathematical constants ; Mathematical functions ; Pressure distribution ; Pressure pulses ; Probability distribution ; Random variables ; Steepest descent method</subject><ispartof>SIAM journal on applied mathematics, 1998-10, Vol.58 (5), p.1532-1546</ispartof><rights>Copyright 1998 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-3feb0356e3822ee94e3d82287b310095937e03eb134fd9adfd5672f2c0de97673</citedby><cites>FETCH-LOGICAL-c290t-3feb0356e3822ee94e3d82287b310095937e03eb134fd9adfd5672f2c0de97673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/118360$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/118360$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Chillan, J.</creatorcontrib><creatorcontrib>Fouque, J. P.</creatorcontrib><title>Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media</title><title>SIAM journal on applied mathematics</title><description>This paper investigates the pressure field generated at the bottom of a high-contrast randomly layered slab by an acoustical pulse emitted at the surface of the slab. This analysis takes place in the framework introduced by Asch et al. [SIAM Rev., 33 (1991), pp. 519-625], where the incident pulse wave length is long compared to the correlation length of the random inhomogeneities but short compared to the size of the slab. This problem has been studied in the one-dimensional case simultaneously by Clouet and Fouque [Ann. Appl. Probab., 4 (1994), pp. 1083-1097] and Lewicki, Burridge, and Papanicolaou [Wave Motion, 20 (1994), pp. 177-195] and also for multimode plane wave pulses by Lewicki, Burridge, and De Hoop [SIAM J. Appl. Math., 56 (1996), pp. 256-276]. These situations require only the use of classical diffusion-approximation results whereas the point-source problem studied in this paper requires a nontrivial combination of diffusion-approximation results with stationary phase methods. The stationary phase method has been used by De Hoop, Chang, and Burridge [Geophys. J. Int., 104 (1991), pp. 489-506] for weakly fluctuating media and by Asch et al. for the study of the reflected pressure. The main statement of this paper is that, in order to simultaneously apply diffusion-approximation and stationary phase results, it is correct to apply them consecutively. We believe that this situation will be encountered again and again in this field and the goal of this paper is to present a clear statement in the most simple case of an acoustical pulse propagating in a randomly layered medium. In that case, the main result gives a formula describing the spreading of the pulse around its arrival time at the bottom of the slab which is obviously not contained in the classical geometrical acoustic approximation.</description><subject>Acoustics</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Coefficients</subject><subject>Determinism</subject><subject>Geometrical acoustics</subject><subject>Inhomogeneity</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Pressure distribution</subject><subject>Pressure pulses</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Steepest descent method</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9Lw0AQxRdRsFY_gHhZvEdnM-lu9liKrULFoBW8hU12UlLSpO4mh3x7t1QQPM3Ae7_58xi7FfAgBKpHD4BSoNZaogCV6jM2EaBnkRLx1zmbHOXoqF-yK-93AELIRE_YJnPk_eCIL2tqrOcrasmZniwvRj4vu8H3dWkang2NJ88z1x3M1vR1u-V1y99Na7t9M_K1GckF6JVsba7ZRWWC_ea3Ttnn8mmzeI7Wb6uXxXwdlbGGPsKKCsCZJEzjmEgnhDZ0qSrCC-F2jYoAqRCYVFYbW9mZVHEVl2BJK6lwyu5Pcw-u-x7I9_muG1wbVuZaSFSACQSTOJlK13nvqMoPrt4bN-YC8mN2-cf_7AJzd2J2vu_cHyBSlIA_YCJqGA</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Chillan, J.</creator><creator>Fouque, J. P.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19981001</creationdate><title>Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media</title><author>Chillan, J. ; Fouque, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-3feb0356e3822ee94e3d82287b310095937e03eb134fd9adfd5672f2c0de97673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acoustics</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Coefficients</topic><topic>Determinism</topic><topic>Geometrical acoustics</topic><topic>Inhomogeneity</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Pressure distribution</topic><topic>Pressure pulses</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Steepest descent method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chillan, J.</creatorcontrib><creatorcontrib>Fouque, J. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chillan, J.</au><au>Fouque, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>58</volume><issue>5</issue><spage>1532</spage><epage>1546</epage><pages>1532-1546</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>This paper investigates the pressure field generated at the bottom of a high-contrast randomly layered slab by an acoustical pulse emitted at the surface of the slab. This analysis takes place in the framework introduced by Asch et al. [SIAM Rev., 33 (1991), pp. 519-625], where the incident pulse wave length is long compared to the correlation length of the random inhomogeneities but short compared to the size of the slab. This problem has been studied in the one-dimensional case simultaneously by Clouet and Fouque [Ann. Appl. Probab., 4 (1994), pp. 1083-1097] and Lewicki, Burridge, and Papanicolaou [Wave Motion, 20 (1994), pp. 177-195] and also for multimode plane wave pulses by Lewicki, Burridge, and De Hoop [SIAM J. Appl. Math., 56 (1996), pp. 256-276]. These situations require only the use of classical diffusion-approximation results whereas the point-source problem studied in this paper requires a nontrivial combination of diffusion-approximation results with stationary phase methods. The stationary phase method has been used by De Hoop, Chang, and Burridge [Geophys. J. Int., 104 (1991), pp. 489-506] for weakly fluctuating media and by Asch et al. for the study of the reflected pressure. The main statement of this paper is that, in order to simultaneously apply diffusion-approximation and stationary phase results, it is correct to apply them consecutively. We believe that this situation will be encountered again and again in this field and the goal of this paper is to present a clear statement in the most simple case of an acoustical pulse propagating in a randomly layered medium. In that case, the main result gives a formula describing the spreading of the pulse around its arrival time at the bottom of the slab which is obviously not contained in the classical geometrical acoustic approximation.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0036139996310789</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1998-10, Vol.58 (5), p.1532-1546
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_916370340
source SIAM Journals Online; JSTOR Mathematics and Statistics; JSTOR
subjects Acoustics
Applied mathematics
Approximation
Coefficients
Determinism
Geometrical acoustics
Inhomogeneity
Mathematical constants
Mathematical functions
Pressure distribution
Pressure pulses
Probability distribution
Random variables
Steepest descent method
title Pressure Fields Generated by Acoustical Pulses Propagating in Randomly Layered Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20Fields%20Generated%20by%20Acoustical%20Pulses%20Propagating%20in%20Randomly%20Layered%20Media&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Chillan,%20J.&rft.date=1998-10-01&rft.volume=58&rft.issue=5&rft.spage=1532&rft.epage=1546&rft.pages=1532-1546&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/s0036139996310789&rft_dat=%3Cjstor_proqu%3E118360%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916370340&rft_id=info:pmid/&rft_jstor_id=118360&rfr_iscdi=true