The Diffusion Limit of Transport Equations II: Chemotaxis Equations
In this paper, we use the diffusion-limit expansion of transport equations developed earlier [T. Hillen and H. G. Othmer, SIAM J. Appl. Math., 61 (2000), pp. 751-775] to study the limiting equation under a variety of external biases imposed on the motion. When applied to chemotaxis or chemokinesis,...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2002-01, Vol.62 (4), p.1222-1250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 4 |
container_start_page | 1222 |
container_title | SIAM journal on applied mathematics |
container_volume | 62 |
creator | Othmer, Hans G. Hillen, Thomas |
description | In this paper, we use the diffusion-limit expansion of transport equations developed earlier [T. Hillen and H. G. Othmer, SIAM J. Appl. Math., 61 (2000), pp. 751-775] to study the limiting equation under a variety of external biases imposed on the motion. When applied to chemotaxis or chemokinesis, these biases produce modification of the turning rate, the movement speed, or the preferred direction of movement. Depending on the strength of the bias, it leads to anisotropic diffusion, to a drift term in the flux, or to both, in the parabolic limit. We show that the classical chemotaxis equation-which we call the Patlak-Keller-Segel-Alt (PKSA) equation-arises only when the bias is sufficiently small. Using this general framework, we derive phenomenological models for chemotaxis of flagellated bacteria, of slime molds, and of myxobacteria. We also show that certain results derived earlier for one-dimensional motion can easily be generalized to two- or three-dimensional motion as well. |
doi_str_mv | 10.1137/s0036139900382772 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916232601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3061720</jstor_id><sourcerecordid>3061720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4d667c03ce42291cfc4f912fadfac7889fddd462782a1a4d4d4d1eeb079968663</originalsourceid><addsrcrecordid>eNpdkEFLxDAUhIMouK7-AMFD8F7NS7pJ403qqoWCByt4KzFN2CzuZjdJQf_9tlQU5B3m8M3Mg0HoEsgNABO3kRDGgUk5aEGFoEdoBkQuMgH0_RjNRpyN_BSdxbgmBIDncobKZmXwg7O2j85vce02LmFvcRPUNu58SHi571UaWMRVdYfLldn4pL5c_APn6MSqz2gufnSO3h6XTfmc1S9PVXlfZ5otRMryjnOhCdMmp1SCtjq3EqhVnVVaFIW0XdflnIqCKlB5Nx4Y80GElLzgnM3R9dS7C37fm5jate_DdnjZSuCUUU5gMMFk0sHHGIxtd8FtVPhugbTjVO3r_6mGzNWUWcfkw2-AEQ6CEnYAzFBkgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916232601</pqid></control><display><type>article</type><title>The Diffusion Limit of Transport Equations II: Chemotaxis Equations</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Othmer, Hans G. ; Hillen, Thomas</creator><creatorcontrib>Othmer, Hans G. ; Hillen, Thomas</creatorcontrib><description>In this paper, we use the diffusion-limit expansion of transport equations developed earlier [T. Hillen and H. G. Othmer, SIAM J. Appl. Math., 61 (2000), pp. 751-775] to study the limiting equation under a variety of external biases imposed on the motion. When applied to chemotaxis or chemokinesis, these biases produce modification of the turning rate, the movement speed, or the preferred direction of movement. Depending on the strength of the bias, it leads to anisotropic diffusion, to a drift term in the flux, or to both, in the parabolic limit. We show that the classical chemotaxis equation-which we call the Patlak-Keller-Segel-Alt (PKSA) equation-arises only when the bias is sufficiently small. Using this general framework, we derive phenomenological models for chemotaxis of flagellated bacteria, of slime molds, and of myxobacteria. We also show that certain results derived earlier for one-dimensional motion can easily be generalized to two- or three-dimensional motion as well.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/s0036139900382772</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Aggregation ; Applied mathematics ; Approximation ; Bacteria ; Bias ; Chemotaxis ; E coli ; Eigenvalues ; Kinetics ; Mathematical models ; Mathematics ; Random walk ; Signal transduction ; Speed ; Tensors ; Velocity</subject><ispartof>SIAM journal on applied mathematics, 2002-01, Vol.62 (4), p.1222-1250</ispartof><rights>Copyright 2002 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-4d667c03ce42291cfc4f912fadfac7889fddd462782a1a4d4d4d1eeb079968663</citedby><cites>FETCH-LOGICAL-c357t-4d667c03ce42291cfc4f912fadfac7889fddd462782a1a4d4d4d1eeb079968663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3061720$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3061720$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,3189,27933,27934,58026,58030,58259,58263</link.rule.ids></links><search><creatorcontrib>Othmer, Hans G.</creatorcontrib><creatorcontrib>Hillen, Thomas</creatorcontrib><title>The Diffusion Limit of Transport Equations II: Chemotaxis Equations</title><title>SIAM journal on applied mathematics</title><description>In this paper, we use the diffusion-limit expansion of transport equations developed earlier [T. Hillen and H. G. Othmer, SIAM J. Appl. Math., 61 (2000), pp. 751-775] to study the limiting equation under a variety of external biases imposed on the motion. When applied to chemotaxis or chemokinesis, these biases produce modification of the turning rate, the movement speed, or the preferred direction of movement. Depending on the strength of the bias, it leads to anisotropic diffusion, to a drift term in the flux, or to both, in the parabolic limit. We show that the classical chemotaxis equation-which we call the Patlak-Keller-Segel-Alt (PKSA) equation-arises only when the bias is sufficiently small. Using this general framework, we derive phenomenological models for chemotaxis of flagellated bacteria, of slime molds, and of myxobacteria. We also show that certain results derived earlier for one-dimensional motion can easily be generalized to two- or three-dimensional motion as well.</description><subject>Aggregation</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Bacteria</subject><subject>Bias</subject><subject>Chemotaxis</subject><subject>E coli</subject><subject>Eigenvalues</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Random walk</subject><subject>Signal transduction</subject><subject>Speed</subject><subject>Tensors</subject><subject>Velocity</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEFLxDAUhIMouK7-AMFD8F7NS7pJ403qqoWCByt4KzFN2CzuZjdJQf_9tlQU5B3m8M3Mg0HoEsgNABO3kRDGgUk5aEGFoEdoBkQuMgH0_RjNRpyN_BSdxbgmBIDncobKZmXwg7O2j85vce02LmFvcRPUNu58SHi571UaWMRVdYfLldn4pL5c_APn6MSqz2gufnSO3h6XTfmc1S9PVXlfZ5otRMryjnOhCdMmp1SCtjq3EqhVnVVaFIW0XdflnIqCKlB5Nx4Y80GElLzgnM3R9dS7C37fm5jate_DdnjZSuCUUU5gMMFk0sHHGIxtd8FtVPhugbTjVO3r_6mGzNWUWcfkw2-AEQ6CEnYAzFBkgw</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Othmer, Hans G.</creator><creator>Hillen, Thomas</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20020101</creationdate><title>The Diffusion Limit of Transport Equations II: Chemotaxis Equations</title><author>Othmer, Hans G. ; Hillen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4d667c03ce42291cfc4f912fadfac7889fddd462782a1a4d4d4d1eeb079968663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aggregation</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Bacteria</topic><topic>Bias</topic><topic>Chemotaxis</topic><topic>E coli</topic><topic>Eigenvalues</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Random walk</topic><topic>Signal transduction</topic><topic>Speed</topic><topic>Tensors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Othmer, Hans G.</creatorcontrib><creatorcontrib>Hillen, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Othmer, Hans G.</au><au>Hillen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Diffusion Limit of Transport Equations II: Chemotaxis Equations</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>62</volume><issue>4</issue><spage>1222</spage><epage>1250</epage><pages>1222-1250</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>In this paper, we use the diffusion-limit expansion of transport equations developed earlier [T. Hillen and H. G. Othmer, SIAM J. Appl. Math., 61 (2000), pp. 751-775] to study the limiting equation under a variety of external biases imposed on the motion. When applied to chemotaxis or chemokinesis, these biases produce modification of the turning rate, the movement speed, or the preferred direction of movement. Depending on the strength of the bias, it leads to anisotropic diffusion, to a drift term in the flux, or to both, in the parabolic limit. We show that the classical chemotaxis equation-which we call the Patlak-Keller-Segel-Alt (PKSA) equation-arises only when the bias is sufficiently small. Using this general framework, we derive phenomenological models for chemotaxis of flagellated bacteria, of slime molds, and of myxobacteria. We also show that certain results derived earlier for one-dimensional motion can easily be generalized to two- or three-dimensional motion as well.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0036139900382772</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2002-01, Vol.62 (4), p.1222-1250 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916232601 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Aggregation Applied mathematics Approximation Bacteria Bias Chemotaxis E coli Eigenvalues Kinetics Mathematical models Mathematics Random walk Signal transduction Speed Tensors Velocity |
title | The Diffusion Limit of Transport Equations II: Chemotaxis Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Diffusion%20Limit%20of%20Transport%20Equations%20II:%20Chemotaxis%20Equations&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Othmer,%20Hans%20G.&rft.date=2002-01-01&rft.volume=62&rft.issue=4&rft.spage=1222&rft.epage=1250&rft.pages=1222-1250&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/s0036139900382772&rft_dat=%3Cjstor_proqu%3E3061720%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916232601&rft_id=info:pmid/&rft_jstor_id=3061720&rfr_iscdi=true |