Bifurcation Analysis of a Mathematical Model for Malaria Transmission

We present an ordinary differential equation mathematical model for the spread of malaria in human and mosquito populations. Susceptible humans can be infected when they are bitten by an infectious mosquito. They then progress through the exposed, infectious, and recovered classes, before reentering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 2006-01, Vol.67 (1), p.24-45
Hauptverfasser: Chitnis, Nakul, Cushing, J. M., Hyman, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 24
container_title SIAM journal on applied mathematics
container_volume 67
creator Chitnis, Nakul
Cushing, J. M.
Hyman, J. M.
description We present an ordinary differential equation mathematical model for the spread of malaria in human and mosquito populations. Susceptible humans can be infected when they are bitten by an infectious mosquito. They then progress through the exposed, infectious, and recovered classes, before reentering the susceptible class. Susceptible mosquitoes can become infected when they bite infectious or recovered humans, and once infected they move through the exposed and infectious classes. Both species follow a logistic population model, with humans having immigration and disease-induced death. We define a reproductive number, ilo> for the number of secondary cases that one infected individual will cause through the duration of the infectious period. We find that the disease- free equilibrium is locally asymptotically stable when R₀ < 1 and unstable when R₀ > 1. We prove the existence of at least one endemic equilibrium point for all R₀ > 1. In the absence of disease-induced death, we prove that the transcritical bifurcation at R₀ = 1 is supercritical (forward). Numerical simulations show that for larger values of the disease-induced death rate, a subcritical (backward) bifurcation is possible at R₀ = 1.
doi_str_mv 10.1137/050638941
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916156572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40233373</jstor_id><sourcerecordid>40233373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4b4ab542dbd3c5851fcfc040098f2a0cd2026a06645df1d45feac4270777d4993</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtbqwR8gLN48rM7ksznWUj-gxUsFb8s02eCWbVOT3UP_vSuVngZmnhmGl7FbhEdEYZ5AgRYTK_GMjRCsKg3yr3M2AhC6RGHtJbvKeQOAqKUdsflzE_rkqGvirpjuqD3kJhcxFFQsqfuut8PEUVsso6_bIsQ0tFtKDRWrRLu8bXIeNq_ZRaA21zf_dcw-X-ar2Vu5-Hh9n00XpRNSdqVcS1oryf3aC6cmCoMLDiSAnQRO4DwHrgm0lsoH9FKFmpzkBowxXlorxuz-eHef4k9f567axD4NX-fKokalleEDejgil2LOqQ7VPjVbSocKofoLqTqFNNi7o93kLqYTlMCFEEaIX3lAYY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916156572</pqid></control><display><type>article</type><title>Bifurcation Analysis of a Mathematical Model for Malaria Transmission</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Chitnis, Nakul ; Cushing, J. M. ; Hyman, J. M.</creator><creatorcontrib>Chitnis, Nakul ; Cushing, J. M. ; Hyman, J. M.</creatorcontrib><description>We present an ordinary differential equation mathematical model for the spread of malaria in human and mosquito populations. Susceptible humans can be infected when they are bitten by an infectious mosquito. They then progress through the exposed, infectious, and recovered classes, before reentering the susceptible class. Susceptible mosquitoes can become infected when they bite infectious or recovered humans, and once infected they move through the exposed and infectious classes. Both species follow a logistic population model, with humans having immigration and disease-induced death. We define a reproductive number, ilo&gt; for the number of secondary cases that one infected individual will cause through the duration of the infectious period. We find that the disease- free equilibrium is locally asymptotically stable when R₀ &lt; 1 and unstable when R₀ &gt; 1. We prove the existence of at least one endemic equilibrium point for all R₀ &gt; 1. In the absence of disease-induced death, we prove that the transcritical bifurcation at R₀ = 1 is supercritical (forward). Numerical simulations show that for larger values of the disease-induced death rate, a subcritical (backward) bifurcation is possible at R₀ = 1.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/050638941</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Adaptive immunity ; Applied mathematics ; Bites and stings ; Disease ; Disease models ; Disease transmission ; Eigenvalues ; Epidemiology ; Equilibrium ; Females ; Humans ; Immigration ; Infections ; Malaria ; Mathematical models ; Mosquitoes ; Mosquitos ; Parasites ; Per capita ; Population</subject><ispartof>SIAM journal on applied mathematics, 2006-01, Vol.67 (1), p.24-45</ispartof><rights>Copyright 2007 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4b4ab542dbd3c5851fcfc040098f2a0cd2026a06645df1d45feac4270777d4993</citedby><cites>FETCH-LOGICAL-c344t-4b4ab542dbd3c5851fcfc040098f2a0cd2026a06645df1d45feac4270777d4993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40233373$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40233373$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Chitnis, Nakul</creatorcontrib><creatorcontrib>Cushing, J. M.</creatorcontrib><creatorcontrib>Hyman, J. M.</creatorcontrib><title>Bifurcation Analysis of a Mathematical Model for Malaria Transmission</title><title>SIAM journal on applied mathematics</title><description>We present an ordinary differential equation mathematical model for the spread of malaria in human and mosquito populations. Susceptible humans can be infected when they are bitten by an infectious mosquito. They then progress through the exposed, infectious, and recovered classes, before reentering the susceptible class. Susceptible mosquitoes can become infected when they bite infectious or recovered humans, and once infected they move through the exposed and infectious classes. Both species follow a logistic population model, with humans having immigration and disease-induced death. We define a reproductive number, ilo&gt; for the number of secondary cases that one infected individual will cause through the duration of the infectious period. We find that the disease- free equilibrium is locally asymptotically stable when R₀ &lt; 1 and unstable when R₀ &gt; 1. We prove the existence of at least one endemic equilibrium point for all R₀ &gt; 1. In the absence of disease-induced death, we prove that the transcritical bifurcation at R₀ = 1 is supercritical (forward). Numerical simulations show that for larger values of the disease-induced death rate, a subcritical (backward) bifurcation is possible at R₀ = 1.</description><subject>Adaptive immunity</subject><subject>Applied mathematics</subject><subject>Bites and stings</subject><subject>Disease</subject><subject>Disease models</subject><subject>Disease transmission</subject><subject>Eigenvalues</subject><subject>Epidemiology</subject><subject>Equilibrium</subject><subject>Females</subject><subject>Humans</subject><subject>Immigration</subject><subject>Infections</subject><subject>Malaria</subject><subject>Mathematical models</subject><subject>Mosquitoes</subject><subject>Mosquitos</subject><subject>Parasites</subject><subject>Per capita</subject><subject>Population</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1LAzEQBuAgCtbqwR8gLN48rM7ksznWUj-gxUsFb8s02eCWbVOT3UP_vSuVngZmnhmGl7FbhEdEYZ5AgRYTK_GMjRCsKg3yr3M2AhC6RGHtJbvKeQOAqKUdsflzE_rkqGvirpjuqD3kJhcxFFQsqfuut8PEUVsso6_bIsQ0tFtKDRWrRLu8bXIeNq_ZRaA21zf_dcw-X-ar2Vu5-Hh9n00XpRNSdqVcS1oryf3aC6cmCoMLDiSAnQRO4DwHrgm0lsoH9FKFmpzkBowxXlorxuz-eHef4k9f567axD4NX-fKokalleEDejgil2LOqQ7VPjVbSocKofoLqTqFNNi7o93kLqYTlMCFEEaIX3lAYY4</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Chitnis, Nakul</creator><creator>Cushing, J. M.</creator><creator>Hyman, J. M.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20060101</creationdate><title>Bifurcation Analysis of a Mathematical Model for Malaria Transmission</title><author>Chitnis, Nakul ; Cushing, J. M. ; Hyman, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4b4ab542dbd3c5851fcfc040098f2a0cd2026a06645df1d45feac4270777d4993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive immunity</topic><topic>Applied mathematics</topic><topic>Bites and stings</topic><topic>Disease</topic><topic>Disease models</topic><topic>Disease transmission</topic><topic>Eigenvalues</topic><topic>Epidemiology</topic><topic>Equilibrium</topic><topic>Females</topic><topic>Humans</topic><topic>Immigration</topic><topic>Infections</topic><topic>Malaria</topic><topic>Mathematical models</topic><topic>Mosquitoes</topic><topic>Mosquitos</topic><topic>Parasites</topic><topic>Per capita</topic><topic>Population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chitnis, Nakul</creatorcontrib><creatorcontrib>Cushing, J. M.</creatorcontrib><creatorcontrib>Hyman, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chitnis, Nakul</au><au>Cushing, J. M.</au><au>Hyman, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation Analysis of a Mathematical Model for Malaria Transmission</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>67</volume><issue>1</issue><spage>24</spage><epage>45</epage><pages>24-45</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>We present an ordinary differential equation mathematical model for the spread of malaria in human and mosquito populations. Susceptible humans can be infected when they are bitten by an infectious mosquito. They then progress through the exposed, infectious, and recovered classes, before reentering the susceptible class. Susceptible mosquitoes can become infected when they bite infectious or recovered humans, and once infected they move through the exposed and infectious classes. Both species follow a logistic population model, with humans having immigration and disease-induced death. We define a reproductive number, ilo&gt; for the number of secondary cases that one infected individual will cause through the duration of the infectious period. We find that the disease- free equilibrium is locally asymptotically stable when R₀ &lt; 1 and unstable when R₀ &gt; 1. We prove the existence of at least one endemic equilibrium point for all R₀ &gt; 1. In the absence of disease-induced death, we prove that the transcritical bifurcation at R₀ = 1 is supercritical (forward). Numerical simulations show that for larger values of the disease-induced death rate, a subcritical (backward) bifurcation is possible at R₀ = 1.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050638941</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 2006-01, Vol.67 (1), p.24-45
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_916156572
source Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics
subjects Adaptive immunity
Applied mathematics
Bites and stings
Disease
Disease models
Disease transmission
Eigenvalues
Epidemiology
Equilibrium
Females
Humans
Immigration
Infections
Malaria
Mathematical models
Mosquitoes
Mosquitos
Parasites
Per capita
Population
title Bifurcation Analysis of a Mathematical Model for Malaria Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20Analysis%20of%20a%20Mathematical%20Model%20for%20Malaria%20Transmission&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Chitnis,%20Nakul&rft.date=2006-01-01&rft.volume=67&rft.issue=1&rft.spage=24&rft.epage=45&rft.pages=24-45&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/050638941&rft_dat=%3Cjstor_proqu%3E40233373%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916156572&rft_id=info:pmid/&rft_jstor_id=40233373&rfr_iscdi=true