A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating
This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2011-08, Vol.19 (8), p.1394-1406 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1406 |
---|---|
container_issue | 8 |
container_start_page | 1394 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 19 |
creator | Ishihara, S. Hariyama, M. Kameyama, M. |
description | This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C. |
doi_str_mv | 10.1109/TVLSI.2010.2050500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_916009951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5483137</ieee_id><sourcerecordid>2560422131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoOKf_gL4UQXyq5meTgC9zuDooOHD6GrI2lY4umUnL8L83s2MP3j3cHfe548sXgGsEHxCC8nH5WbzPHzCMM4YsJjwBI8QYT2WM09jDjKQCI3gOLkJYQ4golXAEniZJ4Xbpwu2MT2aLfJI862CqxNlk0nfOuo3rQzJrrElzrxubDGSuu8Z-XYKzWrfBXB3qGHzMXpbT17R4y-fTSZGWhGVdihEpmYjapKh4jbRAxBBhMK2F4HSV4VJUtCZYy5pmLDNyRREXlZQ0Q4JhQ8bgfvi79e67N6FTmyaUpm21NVGekpBLwgXikbz9R65d720UpyTKIJSSoQjhASq9C8GbWm19s9H-RyGo9naqPzvV3k51sDMe3R0-61Dqtvbalk04XmJKIeVCRu5m4BpjzHHNqCCIcPILGj551Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916009951</pqid></control><display><type>article</type><title>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</title><source>IEEE Electronic Library (IEL)</source><creator>Ishihara, S. ; Hariyama, M. ; Kameyama, M.</creator><creatorcontrib>Ishihara, S. ; Hariyama, M. ; Kameyama, M.</creatorcontrib><description>This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2010.2050500</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Asynchronous architecture ; asynchronous field-programmable gate array (FPGA) ; Autonomous ; Circuit properties ; Clocks ; CMOS process ; Computer architecture ; Costs ; Cross-disciplinary physics: materials science; rheology ; Delay estimation ; Design. Technologies. Operation analysis. Testing ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Field programmable gate arrays ; Gating and risering ; Integrated circuits ; level-encoded dual-rail (LEDR) encoding ; Lookup tables ; Materials science ; Physics ; Porous materials; granular materials ; Power consumption ; reconfigurable VLSI ; self-timed architecture ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Specific materials ; Table lookup ; Threshold voltage ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2011-08, Vol.19 (8), p.1394-1406</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</citedby><cites>FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5483137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5483137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24404789$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishihara, S.</creatorcontrib><creatorcontrib>Hariyama, M.</creatorcontrib><creatorcontrib>Kameyama, M.</creatorcontrib><title>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Asynchronous architecture</subject><subject>asynchronous field-programmable gate array (FPGA)</subject><subject>Autonomous</subject><subject>Circuit properties</subject><subject>Clocks</subject><subject>CMOS process</subject><subject>Computer architecture</subject><subject>Costs</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Delay estimation</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Field programmable gate arrays</subject><subject>Gating and risering</subject><subject>Integrated circuits</subject><subject>level-encoded dual-rail (LEDR) encoding</subject><subject>Lookup tables</subject><subject>Materials science</subject><subject>Physics</subject><subject>Porous materials; granular materials</subject><subject>Power consumption</subject><subject>reconfigurable VLSI</subject><subject>self-timed architecture</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Specific materials</subject><subject>Table lookup</subject><subject>Threshold voltage</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQx4MoOKf_gL4UQXyq5meTgC9zuDooOHD6GrI2lY4umUnL8L83s2MP3j3cHfe548sXgGsEHxCC8nH5WbzPHzCMM4YsJjwBI8QYT2WM09jDjKQCI3gOLkJYQ4golXAEniZJ4Xbpwu2MT2aLfJI862CqxNlk0nfOuo3rQzJrrElzrxubDGSuu8Z-XYKzWrfBXB3qGHzMXpbT17R4y-fTSZGWhGVdihEpmYjapKh4jbRAxBBhMK2F4HSV4VJUtCZYy5pmLDNyRREXlZQ0Q4JhQ8bgfvi79e67N6FTmyaUpm21NVGekpBLwgXikbz9R65d720UpyTKIJSSoQjhASq9C8GbWm19s9H-RyGo9naqPzvV3k51sDMe3R0-61Dqtvbalk04XmJKIeVCRu5m4BpjzHHNqCCIcPILGj551Q</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Ishihara, S.</creator><creator>Hariyama, M.</creator><creator>Kameyama, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110801</creationdate><title>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</title><author>Ishihara, S. ; Hariyama, M. ; Kameyama, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Asynchronous architecture</topic><topic>asynchronous field-programmable gate array (FPGA)</topic><topic>Autonomous</topic><topic>Circuit properties</topic><topic>Clocks</topic><topic>CMOS process</topic><topic>Computer architecture</topic><topic>Costs</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Delay estimation</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Field programmable gate arrays</topic><topic>Gating and risering</topic><topic>Integrated circuits</topic><topic>level-encoded dual-rail (LEDR) encoding</topic><topic>Lookup tables</topic><topic>Materials science</topic><topic>Physics</topic><topic>Porous materials; granular materials</topic><topic>Power consumption</topic><topic>reconfigurable VLSI</topic><topic>self-timed architecture</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Specific materials</topic><topic>Table lookup</topic><topic>Threshold voltage</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishihara, S.</creatorcontrib><creatorcontrib>Hariyama, M.</creatorcontrib><creatorcontrib>Kameyama, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishihara, S.</au><au>Hariyama, M.</au><au>Kameyama, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>19</volume><issue>8</issue><spage>1394</spage><epage>1406</epage><pages>1394-1406</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2010.2050500</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2011-08, Vol.19 (8), p.1394-1406 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_journals_916009951 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Architecture Asynchronous architecture asynchronous field-programmable gate array (FPGA) Autonomous Circuit properties Clocks CMOS process Computer architecture Costs Cross-disciplinary physics: materials science rheology Delay estimation Design. Technologies. Operation analysis. Testing Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronics Energy consumption Exact sciences and technology Field programmable gate arrays Gating and risering Integrated circuits level-encoded dual-rail (LEDR) encoding Lookup tables Materials science Physics Porous materials granular materials Power consumption reconfigurable VLSI self-timed architecture Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Specific materials Table lookup Threshold voltage Very large scale integration |
title | A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Power%20FPGA%20Based%20on%20Autonomous%20Fine-Grain%20Power%20Gating&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Ishihara,%20S.&rft.date=2011-08-01&rft.volume=19&rft.issue=8&rft.spage=1394&rft.epage=1406&rft.pages=1394-1406&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2010.2050500&rft_dat=%3Cproquest_RIE%3E2560422131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916009951&rft_id=info:pmid/&rft_ieee_id=5483137&rfr_iscdi=true |