A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating

This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2011-08, Vol.19 (8), p.1394-1406
Hauptverfasser: Ishihara, S., Hariyama, M., Kameyama, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 8
container_start_page 1394
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 19
creator Ishihara, S.
Hariyama, M.
Kameyama, M.
description This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.
doi_str_mv 10.1109/TVLSI.2010.2050500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_916009951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5483137</ieee_id><sourcerecordid>2560422131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoOKf_gL4UQXyq5meTgC9zuDooOHD6GrI2lY4umUnL8L83s2MP3j3cHfe548sXgGsEHxCC8nH5WbzPHzCMM4YsJjwBI8QYT2WM09jDjKQCI3gOLkJYQ4golXAEniZJ4Xbpwu2MT2aLfJI862CqxNlk0nfOuo3rQzJrrElzrxubDGSuu8Z-XYKzWrfBXB3qGHzMXpbT17R4y-fTSZGWhGVdihEpmYjapKh4jbRAxBBhMK2F4HSV4VJUtCZYy5pmLDNyRREXlZQ0Q4JhQ8bgfvi79e67N6FTmyaUpm21NVGekpBLwgXikbz9R65d720UpyTKIJSSoQjhASq9C8GbWm19s9H-RyGo9naqPzvV3k51sDMe3R0-61Dqtvbalk04XmJKIeVCRu5m4BpjzHHNqCCIcPILGj551Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916009951</pqid></control><display><type>article</type><title>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</title><source>IEEE Electronic Library (IEL)</source><creator>Ishihara, S. ; Hariyama, M. ; Kameyama, M.</creator><creatorcontrib>Ishihara, S. ; Hariyama, M. ; Kameyama, M.</creatorcontrib><description>This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2010.2050500</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; Asynchronous architecture ; asynchronous field-programmable gate array (FPGA) ; Autonomous ; Circuit properties ; Clocks ; CMOS process ; Computer architecture ; Costs ; Cross-disciplinary physics: materials science; rheology ; Delay estimation ; Design. Technologies. Operation analysis. Testing ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy consumption ; Exact sciences and technology ; Field programmable gate arrays ; Gating and risering ; Integrated circuits ; level-encoded dual-rail (LEDR) encoding ; Lookup tables ; Materials science ; Physics ; Porous materials; granular materials ; Power consumption ; reconfigurable VLSI ; self-timed architecture ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Specific materials ; Table lookup ; Threshold voltage ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2011-08, Vol.19 (8), p.1394-1406</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</citedby><cites>FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5483137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5483137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24404789$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishihara, S.</creatorcontrib><creatorcontrib>Hariyama, M.</creatorcontrib><creatorcontrib>Kameyama, M.</creatorcontrib><title>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>Asynchronous architecture</subject><subject>asynchronous field-programmable gate array (FPGA)</subject><subject>Autonomous</subject><subject>Circuit properties</subject><subject>Clocks</subject><subject>CMOS process</subject><subject>Computer architecture</subject><subject>Costs</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Delay estimation</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy consumption</subject><subject>Exact sciences and technology</subject><subject>Field programmable gate arrays</subject><subject>Gating and risering</subject><subject>Integrated circuits</subject><subject>level-encoded dual-rail (LEDR) encoding</subject><subject>Lookup tables</subject><subject>Materials science</subject><subject>Physics</subject><subject>Porous materials; granular materials</subject><subject>Power consumption</subject><subject>reconfigurable VLSI</subject><subject>self-timed architecture</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Specific materials</subject><subject>Table lookup</subject><subject>Threshold voltage</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQx4MoOKf_gL4UQXyq5meTgC9zuDooOHD6GrI2lY4umUnL8L83s2MP3j3cHfe548sXgGsEHxCC8nH5WbzPHzCMM4YsJjwBI8QYT2WM09jDjKQCI3gOLkJYQ4golXAEniZJ4Xbpwu2MT2aLfJI862CqxNlk0nfOuo3rQzJrrElzrxubDGSuu8Z-XYKzWrfBXB3qGHzMXpbT17R4y-fTSZGWhGVdihEpmYjapKh4jbRAxBBhMK2F4HSV4VJUtCZYy5pmLDNyRREXlZQ0Q4JhQ8bgfvi79e67N6FTmyaUpm21NVGekpBLwgXikbz9R65d720UpyTKIJSSoQjhASq9C8GbWm19s9H-RyGo9naqPzvV3k51sDMe3R0-61Dqtvbalk04XmJKIeVCRu5m4BpjzHHNqCCIcPILGj551Q</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Ishihara, S.</creator><creator>Hariyama, M.</creator><creator>Kameyama, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110801</creationdate><title>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</title><author>Ishihara, S. ; Hariyama, M. ; Kameyama, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-213c5801098d7f1a813e38e24f8874b62c8d4f32a9f4656e9b4178d99461852e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>Asynchronous architecture</topic><topic>asynchronous field-programmable gate array (FPGA)</topic><topic>Autonomous</topic><topic>Circuit properties</topic><topic>Clocks</topic><topic>CMOS process</topic><topic>Computer architecture</topic><topic>Costs</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Delay estimation</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy consumption</topic><topic>Exact sciences and technology</topic><topic>Field programmable gate arrays</topic><topic>Gating and risering</topic><topic>Integrated circuits</topic><topic>level-encoded dual-rail (LEDR) encoding</topic><topic>Lookup tables</topic><topic>Materials science</topic><topic>Physics</topic><topic>Porous materials; granular materials</topic><topic>Power consumption</topic><topic>reconfigurable VLSI</topic><topic>self-timed architecture</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Specific materials</topic><topic>Table lookup</topic><topic>Threshold voltage</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishihara, S.</creatorcontrib><creatorcontrib>Hariyama, M.</creatorcontrib><creatorcontrib>Kameyama, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishihara, S.</au><au>Hariyama, M.</au><au>Kameyama, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>19</volume><issue>8</issue><spage>1394</spage><epage>1406</epage><pages>1394-1406</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>This paper presents a field-programmable gate array (FPGA) based on lookup table level fine-grain power gating with small overheads. The power gating technique implemented in the proposed architecture can directly detect the activity of each look-up-table easily by exploiting features of asynchronous architectures. Moreover, detecting the data arrival in advance prevents the delay increase for waking-up and the power consumption of unnecessary power switching. Since the power gating technique has small overheads, the granularity size of a power-gated domain is as fine as a single two-input and one-output lookup table. The proposed FPGA is fabricated using the ASPLA 90-nm CMOS process with dual threshold voltages. We use an image processing application called "template matching" for evaluation. Since the proposed FPGA is suitable for processing where the workload changes dynamically, an adaptive algorithm where a small computational kernel is employed. Compared to a synchronous FPGA and an asynchronous FPGA without power gating, the power consumption is reduced respectively by 38% and 15% at 85°C.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2010.2050500</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2011-08, Vol.19 (8), p.1394-1406
issn 1063-8210
1557-9999
language eng
recordid cdi_proquest_journals_916009951
source IEEE Electronic Library (IEL)
subjects Applied sciences
Architecture
Asynchronous architecture
asynchronous field-programmable gate array (FPGA)
Autonomous
Circuit properties
Clocks
CMOS process
Computer architecture
Costs
Cross-disciplinary physics: materials science
rheology
Delay estimation
Design. Technologies. Operation analysis. Testing
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Energy consumption
Exact sciences and technology
Field programmable gate arrays
Gating and risering
Integrated circuits
level-encoded dual-rail (LEDR) encoding
Lookup tables
Materials science
Physics
Porous materials
granular materials
Power consumption
reconfigurable VLSI
self-timed architecture
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Specific materials
Table lookup
Threshold voltage
Very large scale integration
title A Low-Power FPGA Based on Autonomous Fine-Grain Power Gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Power%20FPGA%20Based%20on%20Autonomous%20Fine-Grain%20Power%20Gating&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Ishihara,%20S.&rft.date=2011-08-01&rft.volume=19&rft.issue=8&rft.spage=1394&rft.epage=1406&rft.pages=1394-1406&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2010.2050500&rft_dat=%3Cproquest_RIE%3E2560422131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916009951&rft_id=info:pmid/&rft_ieee_id=5483137&rfr_iscdi=true