Spectrum of a Linearized Amplitude Equation for Alternans in a Cardiac Fiber
Under rapid periodic pacing, cardiac cells typically undergo a period-doubling bifurcation in which action potentials of short and long duration alternate with one another. If these action potentials propagate in a fiber, the short-long alternation may suffer reversals of phase at various points alo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2008-01, Vol.69 (3), p.704-719 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 719 |
---|---|
container_issue | 3 |
container_start_page | 704 |
container_title | SIAM journal on applied mathematics |
container_volume | 69 |
creator | Dai, Shu Schaeffer, David G. |
description | Under rapid periodic pacing, cardiac cells typically undergo a period-doubling bifurcation in which action potentials of short and long duration alternate with one another. If these action potentials propagate in a fiber, the short-long alternation may suffer reversals of phase at various points along the fiber, a phenomenon called (spatially) discordant alternans. Either stationary or moving patterns are possible. Using a weak approximation, Echebarria and Karma proposed an equation to describe the spatiotemporal dynamics of small-amplitude alternans in a class of simple cardiac models, and they showed that an instability in this equation predicts the spontaneous formation of discordant alternans. To study the bifurcation, they computed the spectrum of the relevant linearized operator numerically, supplemented with partial analytical results. In the present paper we calculate this spectrum with purely analytical methods in two cases where a small parameter may be exploited: (i) small dispersion or (ii) a long fiber. From this analysis we estimate the parameter ranges in which the phase reversals of discordant alternans are stationary or moving. |
doi_str_mv | 10.1137/070711384 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_916007615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40233640</jstor_id><sourcerecordid>40233640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-b9ace457f180f2f99ebaaa19d897bd8c33b14c2bcd3abb45cf71f7a7631ffdcd3</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6rB3-AELx5qGaatGmOy7KrQsGDCt5KPiFLt-km6UF_vZWVPc0wPDMML0K3QB4BKH8inPC5adgZWgARVcGh_DpHC0JoXQAV4hJdpbQjBKBmYoHa99HqHKc9Dg5L3PrByuh_rMGr_dj7PBmLN4dJZh8G7ELEqz7bOMghYT_MC2sZjZcab72y8RpdONkne_Nfl-hzu_lYvxTt2_PretUWmgLNhRJSW1ZxBw1xpRPCKiklCNMIrkyjKVXAdKm0oVIpVmnHwXHJawrOmXm6RPfHu2MMh8mm3O3CND_Vp05ATQivoZrRwxHpGFKK1nVj9HsZvzsg3V9W3Smr2d4d7S7lEE-QkZLSmhH6C_ZqZR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916007615</pqid></control><display><type>article</type><title>Spectrum of a Linearized Amplitude Equation for Alternans in a Cardiac Fiber</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Dai, Shu ; Schaeffer, David G.</creator><creatorcontrib>Dai, Shu ; Schaeffer, David G.</creatorcontrib><description>Under rapid periodic pacing, cardiac cells typically undergo a period-doubling bifurcation in which action potentials of short and long duration alternate with one another. If these action potentials propagate in a fiber, the short-long alternation may suffer reversals of phase at various points along the fiber, a phenomenon called (spatially) discordant alternans. Either stationary or moving patterns are possible. Using a weak approximation, Echebarria and Karma proposed an equation to describe the spatiotemporal dynamics of small-amplitude alternans in a class of simple cardiac models, and they showed that an instability in this equation predicts the spontaneous formation of discordant alternans. To study the bifurcation, they computed the spectrum of the relevant linearized operator numerically, supplemented with partial analytical results. In the present paper we calculate this spectrum with purely analytical methods in two cases where a small parameter may be exploited: (i) small dispersion or (ii) a long fiber. From this analysis we estimate the parameter ranges in which the phase reversals of discordant alternans are stationary or moving.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/070711384</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Action potentials ; Approximation ; Boundary conditions ; Copyright ; Critical values ; Eigenfunctions ; Eigenvalues ; Karma ; Mathematical functions ; Modeling ; Ventricular fibrillation</subject><ispartof>SIAM journal on applied mathematics, 2008-01, Vol.69 (3), p.704-719</ispartof><rights>Copyright 2009 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-b9ace457f180f2f99ebaaa19d897bd8c33b14c2bcd3abb45cf71f7a7631ffdcd3</citedby><cites>FETCH-LOGICAL-c313t-b9ace457f180f2f99ebaaa19d897bd8c33b14c2bcd3abb45cf71f7a7631ffdcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40233640$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40233640$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3185,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Dai, Shu</creatorcontrib><creatorcontrib>Schaeffer, David G.</creatorcontrib><title>Spectrum of a Linearized Amplitude Equation for Alternans in a Cardiac Fiber</title><title>SIAM journal on applied mathematics</title><description>Under rapid periodic pacing, cardiac cells typically undergo a period-doubling bifurcation in which action potentials of short and long duration alternate with one another. If these action potentials propagate in a fiber, the short-long alternation may suffer reversals of phase at various points along the fiber, a phenomenon called (spatially) discordant alternans. Either stationary or moving patterns are possible. Using a weak approximation, Echebarria and Karma proposed an equation to describe the spatiotemporal dynamics of small-amplitude alternans in a class of simple cardiac models, and they showed that an instability in this equation predicts the spontaneous formation of discordant alternans. To study the bifurcation, they computed the spectrum of the relevant linearized operator numerically, supplemented with partial analytical results. In the present paper we calculate this spectrum with purely analytical methods in two cases where a small parameter may be exploited: (i) small dispersion or (ii) a long fiber. From this analysis we estimate the parameter ranges in which the phase reversals of discordant alternans are stationary or moving.</description><subject>Action potentials</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Copyright</subject><subject>Critical values</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Karma</subject><subject>Mathematical functions</subject><subject>Modeling</subject><subject>Ventricular fibrillation</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1LxDAQBuAgCq6rB3-AELx5qGaatGmOy7KrQsGDCt5KPiFLt-km6UF_vZWVPc0wPDMML0K3QB4BKH8inPC5adgZWgARVcGh_DpHC0JoXQAV4hJdpbQjBKBmYoHa99HqHKc9Dg5L3PrByuh_rMGr_dj7PBmLN4dJZh8G7ELEqz7bOMghYT_MC2sZjZcab72y8RpdONkne_Nfl-hzu_lYvxTt2_PretUWmgLNhRJSW1ZxBw1xpRPCKiklCNMIrkyjKVXAdKm0oVIpVmnHwXHJawrOmXm6RPfHu2MMh8mm3O3CND_Vp05ATQivoZrRwxHpGFKK1nVj9HsZvzsg3V9W3Smr2d4d7S7lEE-QkZLSmhH6C_ZqZR0</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Dai, Shu</creator><creator>Schaeffer, David G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20080101</creationdate><title>Spectrum of a Linearized Amplitude Equation for Alternans in a Cardiac Fiber</title><author>Dai, Shu ; Schaeffer, David G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-b9ace457f180f2f99ebaaa19d897bd8c33b14c2bcd3abb45cf71f7a7631ffdcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action potentials</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Copyright</topic><topic>Critical values</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Karma</topic><topic>Mathematical functions</topic><topic>Modeling</topic><topic>Ventricular fibrillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shu</creatorcontrib><creatorcontrib>Schaeffer, David G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shu</au><au>Schaeffer, David G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrum of a Linearized Amplitude Equation for Alternans in a Cardiac Fiber</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>69</volume><issue>3</issue><spage>704</spage><epage>719</epage><pages>704-719</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>Under rapid periodic pacing, cardiac cells typically undergo a period-doubling bifurcation in which action potentials of short and long duration alternate with one another. If these action potentials propagate in a fiber, the short-long alternation may suffer reversals of phase at various points along the fiber, a phenomenon called (spatially) discordant alternans. Either stationary or moving patterns are possible. Using a weak approximation, Echebarria and Karma proposed an equation to describe the spatiotemporal dynamics of small-amplitude alternans in a class of simple cardiac models, and they showed that an instability in this equation predicts the spontaneous formation of discordant alternans. To study the bifurcation, they computed the spectrum of the relevant linearized operator numerically, supplemented with partial analytical results. In the present paper we calculate this spectrum with purely analytical methods in two cases where a small parameter may be exploited: (i) small dispersion or (ii) a long fiber. From this analysis we estimate the parameter ranges in which the phase reversals of discordant alternans are stationary or moving.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070711384</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2008-01, Vol.69 (3), p.704-719 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_proquest_journals_916007615 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Action potentials Approximation Boundary conditions Copyright Critical values Eigenfunctions Eigenvalues Karma Mathematical functions Modeling Ventricular fibrillation |
title | Spectrum of a Linearized Amplitude Equation for Alternans in a Cardiac Fiber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrum%20of%20a%20Linearized%20Amplitude%20Equation%20for%20Alternans%20in%20a%20Cardiac%20Fiber&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Dai,%20Shu&rft.date=2008-01-01&rft.volume=69&rft.issue=3&rft.spage=704&rft.epage=719&rft.pages=704-719&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/070711384&rft_dat=%3Cjstor_proqu%3E40233640%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916007615&rft_id=info:pmid/&rft_jstor_id=40233640&rfr_iscdi=true |