On Estimation of Maxima of Sums of Random Variables Indexed by Edges of Graphs
This paper considers a family of independent identically distributed random variables that are indexed by the edges of a graph. The maximum of sums of such variables along the paths of the graph is studied. We show that if one graph covers another one, then the maximum of sums for the first graph is...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1995-01, Vol.39 (4), p.696-702 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 4 |
container_start_page | 696 |
container_title | Theory of probability and its applications |
container_volume | 39 |
creator | Karpelevich, F. I. |
description | This paper considers a family of independent identically distributed random variables that are indexed by the edges of a graph. The maximum of sums of such variables along the paths of the graph is studied. We show that if one graph covers another one, then the maximum of sums for the first graph is stochastically greater than that for the second graph. |
doi_str_mv | 10.1137/1139056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914520011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555340441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-e0a1e7120cfcc2aa0e06705d2ef5a9c5bcf66862b349934a4843228c892f3f7c3</originalsourceid><addsrcrecordid>eNotkFtLw0AQhRdRsEbxLyy--BSdvSb7KCXWQrXgDd_CZrOrKc3F3QTaf29i-zJnBg7nMB9C1wTuCGHJ_TgUCHmCZgSUiBNK1CmaAXCIRSq-ztFFCBsAkJSIGXpZNzgLfVXrvmob3Dr8rHfjNW1vQx0mfdVN2db4U_tKF1sb8LIp7c6WuNjjrPy2_6aF191PuERnTm-DvTpqhD4es_f5U7xaL5bzh1VsCOd9bEETmxAKxhlDtQYLMgFRUuuEVkYUxkmZSlowrhTjmqecUZqaVFHHXGJYhG4OuZ1vfwcb-nzTDr4ZK3NFuKAAI4YI3R5MxrcheOvyzo-v-X1OIJ9Y5UdW7A9Aolkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914520011</pqid></control><display><type>article</type><title>On Estimation of Maxima of Sums of Random Variables Indexed by Edges of Graphs</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Karpelevich, F. I.</creator><creatorcontrib>Karpelevich, F. I.</creatorcontrib><description>This paper considers a family of independent identically distributed random variables that are indexed by the edges of a graph. The maximum of sums of such variables along the paths of the graph is studied. We show that if one graph covers another one, then the maximum of sums for the first graph is stochastically greater than that for the second graph.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/1139056</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Correspondence ; Graphs ; Random variables</subject><ispartof>Theory of probability and its applications, 1995-01, Vol.39 (4), p.696-702</ispartof><rights>[Copyright] © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c144t-e0a1e7120cfcc2aa0e06705d2ef5a9c5bcf66862b349934a4843228c892f3f7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3186,27928,27929</link.rule.ids></links><search><creatorcontrib>Karpelevich, F. I.</creatorcontrib><title>On Estimation of Maxima of Sums of Random Variables Indexed by Edges of Graphs</title><title>Theory of probability and its applications</title><description>This paper considers a family of independent identically distributed random variables that are indexed by the edges of a graph. The maximum of sums of such variables along the paths of the graph is studied. We show that if one graph covers another one, then the maximum of sums for the first graph is stochastically greater than that for the second graph.</description><subject>Correspondence</subject><subject>Graphs</subject><subject>Random variables</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFtLw0AQhRdRsEbxLyy--BSdvSb7KCXWQrXgDd_CZrOrKc3F3QTaf29i-zJnBg7nMB9C1wTuCGHJ_TgUCHmCZgSUiBNK1CmaAXCIRSq-ztFFCBsAkJSIGXpZNzgLfVXrvmob3Dr8rHfjNW1vQx0mfdVN2db4U_tKF1sb8LIp7c6WuNjjrPy2_6aF191PuERnTm-DvTpqhD4es_f5U7xaL5bzh1VsCOd9bEETmxAKxhlDtQYLMgFRUuuEVkYUxkmZSlowrhTjmqecUZqaVFHHXGJYhG4OuZ1vfwcb-nzTDr4ZK3NFuKAAI4YI3R5MxrcheOvyzo-v-X1OIJ9Y5UdW7A9Aolkw</recordid><startdate>19950101</startdate><enddate>19950101</enddate><creator>Karpelevich, F. I.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19950101</creationdate><title>On Estimation of Maxima of Sums of Random Variables Indexed by Edges of Graphs</title><author>Karpelevich, F. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-e0a1e7120cfcc2aa0e06705d2ef5a9c5bcf66862b349934a4843228c892f3f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Correspondence</topic><topic>Graphs</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpelevich, F. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpelevich, F. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Estimation of Maxima of Sums of Random Variables Indexed by Edges of Graphs</atitle><jtitle>Theory of probability and its applications</jtitle><date>1995-01-01</date><risdate>1995</risdate><volume>39</volume><issue>4</issue><spage>696</spage><epage>702</epage><pages>696-702</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>This paper considers a family of independent identically distributed random variables that are indexed by the edges of a graph. The maximum of sums of such variables along the paths of the graph is studied. We show that if one graph covers another one, then the maximum of sums for the first graph is stochastically greater than that for the second graph.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/1139056</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 1995-01, Vol.39 (4), p.696-702 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_journals_914520011 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Correspondence Graphs Random variables |
title | On Estimation of Maxima of Sums of Random Variables Indexed by Edges of Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Estimation%20of%20Maxima%20of%20Sums%20of%20Random%20Variables%20Indexed%20by%20Edges%20of%20Graphs&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Karpelevich,%20F.%20I.&rft.date=1995-01-01&rft.volume=39&rft.issue=4&rft.spage=696&rft.epage=702&rft.pages=696-702&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/1139056&rft_dat=%3Cproquest_cross%3E2555340441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914520011&rft_id=info:pmid/&rfr_iscdi=true |