Estimation Problems for Coefficients of Stochastic Partial Differential Equations. Part I
This paper considers the problem of estimating functional parameters $a_k(t,x)$, $f(t,x)$ by observing a solution $u_\ve(t,x)$ of a stochastic partial differential equation $$ du_\ve(t)=\sum_{|k|\le 2p} a_kD_x^ku_\ve+f\,dt+\ve\,dw(t), $$ where $w(t)$ is a Wiener process. The asymptotic statement of...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1999-01, Vol.43 (3), p.370-387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 3 |
container_start_page | 370 |
container_title | Theory of probability and its applications |
container_volume | 43 |
creator | Ibragimov, I. A. Khas'minskii, R. Z. |
description | This paper considers the problem of estimating functional parameters $a_k(t,x)$, $f(t,x)$ by observing a solution $u_\ve(t,x)$ of a stochastic partial differential equation $$ du_\ve(t)=\sum_{|k|\le 2p} a_kD_x^ku_\ve+f\,dt+\ve\,dw(t), $$ where $w(t)$ is a Wiener process. The asymptotic statement of the problem is considered when the noise level $\ve\to 0$. In the first part of the work we determine what is considered the statistics of the problem and investigate the problem of estimating f. |
doi_str_mv | 10.1137/S0040585X97976982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914485860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555057111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ea9e48103484857357e8bf2e81e0d167121bddb4730a0d4b22f9d94ed4ca5faa3</originalsourceid><addsrcrecordid>eNplkMFKAzEQhoMouFYfwFvwvnUmm2ySo9RaCwULVdDTkt1NcEvbtEl68O3dbb15Gobv4x_mJ-QeYYxYyMcVAAehxKeWWpZasQuSIWiRS4b6kmQDzgd-TW5iXANAyVBk5GsaU7c1qfM7ugy-3thtpM4HOvHWua7p7C5F6h1dJd98m15u6NKE1JkNfe6cs6EXhmV6OJ5S4vjE6fyWXDmzifbub47Ix8v0ffKaL95m88nTIm-YhJRboy1XCAVXXAlZCGlV7ZhVaKHFUiLDum1rLgsw0PKaMadbzW3LGyOcMcWIPJxz98Efjjamau2PYdefrDTyPlOV0Et4lprgYwzWVfvQvx1-KoRqKLD6V2DxCxCxY6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914485860</pqid></control><display><type>article</type><title>Estimation Problems for Coefficients of Stochastic Partial Differential Equations. Part I</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Ibragimov, I. A. ; Khas'minskii, R. Z.</creator><creatorcontrib>Ibragimov, I. A. ; Khas'minskii, R. Z.</creatorcontrib><description>This paper considers the problem of estimating functional parameters $a_k(t,x)$, $f(t,x)$ by observing a solution $u_\ve(t,x)$ of a stochastic partial differential equation $$ du_\ve(t)=\sum_{|k|\le 2p} a_kD_x^ku_\ve+f\,dt+\ve\,dw(t), $$ where $w(t)$ is a Wiener process. The asymptotic statement of the problem is considered when the noise level $\ve\to 0$. In the first part of the work we determine what is considered the statistics of the problem and investigate the problem of estimating f.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97976982</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Boundary conditions ; Estimates ; Hilbert space ; Integrals ; Noise ; Partial differential equations ; Validity</subject><ispartof>Theory of probability and its applications, 1999-01, Vol.43 (3), p.370-387</ispartof><rights>[Copyright] © 1999 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ea9e48103484857357e8bf2e81e0d167121bddb4730a0d4b22f9d94ed4ca5faa3</citedby><cites>FETCH-LOGICAL-c270t-ea9e48103484857357e8bf2e81e0d167121bddb4730a0d4b22f9d94ed4ca5faa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Ibragimov, I. A.</creatorcontrib><creatorcontrib>Khas'minskii, R. Z.</creatorcontrib><title>Estimation Problems for Coefficients of Stochastic Partial Differential Equations. Part I</title><title>Theory of probability and its applications</title><description>This paper considers the problem of estimating functional parameters $a_k(t,x)$, $f(t,x)$ by observing a solution $u_\ve(t,x)$ of a stochastic partial differential equation $$ du_\ve(t)=\sum_{|k|\le 2p} a_kD_x^ku_\ve+f\,dt+\ve\,dw(t), $$ where $w(t)$ is a Wiener process. The asymptotic statement of the problem is considered when the noise level $\ve\to 0$. In the first part of the work we determine what is considered the statistics of the problem and investigate the problem of estimating f.</description><subject>Boundary conditions</subject><subject>Estimates</subject><subject>Hilbert space</subject><subject>Integrals</subject><subject>Noise</subject><subject>Partial differential equations</subject><subject>Validity</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkMFKAzEQhoMouFYfwFvwvnUmm2ySo9RaCwULVdDTkt1NcEvbtEl68O3dbb15Gobv4x_mJ-QeYYxYyMcVAAehxKeWWpZasQuSIWiRS4b6kmQDzgd-TW5iXANAyVBk5GsaU7c1qfM7ugy-3thtpM4HOvHWua7p7C5F6h1dJd98m15u6NKE1JkNfe6cs6EXhmV6OJ5S4vjE6fyWXDmzifbub47Ix8v0ffKaL95m88nTIm-YhJRboy1XCAVXXAlZCGlV7ZhVaKHFUiLDum1rLgsw0PKaMadbzW3LGyOcMcWIPJxz98Efjjamau2PYdefrDTyPlOV0Et4lprgYwzWVfvQvx1-KoRqKLD6V2DxCxCxY6Q</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Ibragimov, I. A.</creator><creator>Khas'minskii, R. Z.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19990101</creationdate><title>Estimation Problems for Coefficients of Stochastic Partial Differential Equations. Part I</title><author>Ibragimov, I. A. ; Khas'minskii, R. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ea9e48103484857357e8bf2e81e0d167121bddb4730a0d4b22f9d94ed4ca5faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Boundary conditions</topic><topic>Estimates</topic><topic>Hilbert space</topic><topic>Integrals</topic><topic>Noise</topic><topic>Partial differential equations</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibragimov, I. A.</creatorcontrib><creatorcontrib>Khas'minskii, R. Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibragimov, I. A.</au><au>Khas'minskii, R. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation Problems for Coefficients of Stochastic Partial Differential Equations. Part I</atitle><jtitle>Theory of probability and its applications</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>43</volume><issue>3</issue><spage>370</spage><epage>387</epage><pages>370-387</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>This paper considers the problem of estimating functional parameters $a_k(t,x)$, $f(t,x)$ by observing a solution $u_\ve(t,x)$ of a stochastic partial differential equation $$ du_\ve(t)=\sum_{|k|\le 2p} a_kD_x^ku_\ve+f\,dt+\ve\,dw(t), $$ where $w(t)$ is a Wiener process. The asymptotic statement of the problem is considered when the noise level $\ve\to 0$. In the first part of the work we determine what is considered the statistics of the problem and investigate the problem of estimating f.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97976982</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 1999-01, Vol.43 (3), p.370-387 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_journals_914485860 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Boundary conditions Estimates Hilbert space Integrals Noise Partial differential equations Validity |
title | Estimation Problems for Coefficients of Stochastic Partial Differential Equations. Part I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20Problems%20for%20Coefficients%20of%20Stochastic%20Partial%20Differential%20Equations.%20Part%20I&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Ibragimov,%20I.%20A.&rft.date=1999-01-01&rft.volume=43&rft.issue=3&rft.spage=370&rft.epage=387&rft.pages=370-387&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97976982&rft_dat=%3Cproquest_cross%3E2555057111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914485860&rft_id=info:pmid/&rfr_iscdi=true |