A Sub-100 [Formula Omitted]W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication

For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. Additionally, link symmetry must be maintained for peer-to-peer network applications. We propose a highly integrated 90 [Formula Omitt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2011-05, Vol.46 (5), p.1049
Hauptverfasser: Pandey, Jagdish, Otis, Brian P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1049
container_title IEEE journal of solid-state circuits
container_volume 46
creator Pandey, Jagdish
Otis, Brian P
description For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. Additionally, link symmetry must be maintained for peer-to-peer network applications. We propose a highly integrated 90 [Formula Omitted]W 400 MHz MICS band transmitter with an output power of 20 [Formula Omitted]W, leading to a 22% global efficiency--the highest reported to date for low-power MICS band systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time [Formula Omitted]250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400 MHz local oscillator topology demonstrates a figure-of-merit of 204 dB while locked to a stable crystal reference. The transmitter occupies 0.04 mm[Formula Omitted] of active die area in 130 nm CMOS and is fully integrated except for the crystal and the matching network.
doi_str_mv 10.1109/JSSC.2011.2118030
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_914475411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554877021</sourcerecordid><originalsourceid>FETCH-proquest_journals_9144754113</originalsourceid><addsrcrecordid>eNqNjstKxDAYhYMoWC8P4C64T-f_e2HapRaLFcssMjCCyBDbKKmdZMxl4dtPRnwAV4dzznfgEHKDkCJCvXjivEkzQEwzxApyOCEJlmXFcJm_nJIEACtWZwDn5MK5KdqiqDAh-o7y8M4QgL62xu7CLOhqp7yX49uG9l3DFx3v6b3QI11bod1vZ2Pg5EiNpp2e5OCV0ezZDF9Kf9Ij2lr5HaQefmgfZq_2sxrEEboiZx9idvL6Ty_Jbfuwbh7Z3po4cH47mWB1rLZ1fLgsC8T8X9ABlh5OSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914475411</pqid></control><display><type>article</type><title>A Sub-100 [Formula Omitted]W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication</title><source>IEEE Electronic Library (IEL)</source><creator>Pandey, Jagdish ; Otis, Brian P</creator><creatorcontrib>Pandey, Jagdish ; Otis, Brian P</creatorcontrib><description>For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. Additionally, link symmetry must be maintained for peer-to-peer network applications. We propose a highly integrated 90 [Formula Omitted]W 400 MHz MICS band transmitter with an output power of 20 [Formula Omitted]W, leading to a 22% global efficiency--the highest reported to date for low-power MICS band systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time [Formula Omitted]250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400 MHz local oscillator topology demonstrates a figure-of-merit of 204 dB while locked to a stable crystal reference. The transmitter occupies 0.04 mm[Formula Omitted] of active die area in 130 nm CMOS and is fully integrated except for the crystal and the matching network.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2011.2118030</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Efficiency ; Peer to peer computing ; Transmitters</subject><ispartof>IEEE journal of solid-state circuits, 2011-05, Vol.46 (5), p.1049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Pandey, Jagdish</creatorcontrib><creatorcontrib>Otis, Brian P</creatorcontrib><title>A Sub-100 [Formula Omitted]W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication</title><title>IEEE journal of solid-state circuits</title><description>For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. Additionally, link symmetry must be maintained for peer-to-peer network applications. We propose a highly integrated 90 [Formula Omitted]W 400 MHz MICS band transmitter with an output power of 20 [Formula Omitted]W, leading to a 22% global efficiency--the highest reported to date for low-power MICS band systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time [Formula Omitted]250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400 MHz local oscillator topology demonstrates a figure-of-merit of 204 dB while locked to a stable crystal reference. The transmitter occupies 0.04 mm[Formula Omitted] of active die area in 130 nm CMOS and is fully integrated except for the crystal and the matching network.</description><subject>Efficiency</subject><subject>Peer to peer computing</subject><subject>Transmitters</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNjstKxDAYhYMoWC8P4C64T-f_e2HapRaLFcssMjCCyBDbKKmdZMxl4dtPRnwAV4dzznfgEHKDkCJCvXjivEkzQEwzxApyOCEJlmXFcJm_nJIEACtWZwDn5MK5KdqiqDAh-o7y8M4QgL62xu7CLOhqp7yX49uG9l3DFx3v6b3QI11bod1vZ2Pg5EiNpp2e5OCV0ezZDF9Kf9Ij2lr5HaQefmgfZq_2sxrEEboiZx9idvL6Ty_Jbfuwbh7Z3po4cH47mWB1rLZ1fLgsC8T8X9ABlh5OSQ</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Pandey, Jagdish</creator><creator>Otis, Brian P</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>A Sub-100 [Formula Omitted]W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication</title><author>Pandey, Jagdish ; Otis, Brian P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_9144754113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Efficiency</topic><topic>Peer to peer computing</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Jagdish</creatorcontrib><creatorcontrib>Otis, Brian P</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Jagdish</au><au>Otis, Brian P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sub-100 [Formula Omitted]W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>46</volume><issue>5</issue><spage>1049</spage><pages>1049-</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><abstract>For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. Additionally, link symmetry must be maintained for peer-to-peer network applications. We propose a highly integrated 90 [Formula Omitted]W 400 MHz MICS band transmitter with an output power of 20 [Formula Omitted]W, leading to a 22% global efficiency--the highest reported to date for low-power MICS band systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time [Formula Omitted]250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400 MHz local oscillator topology demonstrates a figure-of-merit of 204 dB while locked to a stable crystal reference. The transmitter occupies 0.04 mm[Formula Omitted] of active die area in 130 nm CMOS and is fully integrated except for the crystal and the matching network.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSSC.2011.2118030</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2011-05, Vol.46 (5), p.1049
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_914475411
source IEEE Electronic Library (IEL)
subjects Efficiency
Peer to peer computing
Transmitters
title A Sub-100 [Formula Omitted]W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sub-100%20%5BFormula%20Omitted%5DW%20MICS/ISM%20Band%20Transmitter%20Based%20on%20Injection-Locking%20and%20Frequency%20Multiplication&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Pandey,%20Jagdish&rft.date=2011-05-01&rft.volume=46&rft.issue=5&rft.spage=1049&rft.pages=1049-&rft.issn=0018-9200&rft.eissn=1558-173X&rft_id=info:doi/10.1109/JSSC.2011.2118030&rft_dat=%3Cproquest%3E2554877021%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914475411&rft_id=info:pmid/&rfr_iscdi=true