On an Effective Solution of the Optimal Stopping Problem for Random Walks

We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2005, Vol.49 (2), p.344-354
Hauptverfasser: Novikov, A. A., Shiryaev, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 2
container_start_page 344
container_title Theory of probability and its applications
container_volume 49
creator Novikov, A. A.
Shiryaev, A. N.
description We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval $\{0,1,\ldots,T\}$ converges with an exponential rate as $T\to\infty$ to the limit under the assumption that jumps of the random walk are exponentially bounded.
doi_str_mv 10.1137/S0040585X97981093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914320485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554381761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7112998f777a18aa981aeaa13229c6b48600c406a23dbc6356a641081598e24a3</originalsourceid><addsrcrecordid>eNplUMtKAzEUDaJgrX6Au-B-NDfvLKVULRQqVtHdcDtNdOp0MiZTwb93St25OotzOC9CLoFdAwhzs2RMMmXVmzPOAnPiiIwGUIXh4I7JaE8Xe_6UnOW8YYxpDmpEZouWYkunIfiqr789XcZm19expTHQ_sPTRdfXW2zoso9dV7fv9DHFVeO3NMREn7Bdxy19xeYzn5OTgE32F384Ji930-fJQzFf3M8mt_OiElr0hQHgztlgjEGwiENb9IggOHeVXkmrGask08jFelVpoTRqCcyCctZziWJMrg6-XYpfO5_7chN3qR0iSwdScCatGkRwEFUp5px8KLs0zEg_JbByf1j57zDxC7IwW7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914320485</pqid></control><display><type>article</type><title>On an Effective Solution of the Optimal Stopping Problem for Random Walks</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Novikov, A. A. ; Shiryaev, A. N.</creator><creatorcontrib>Novikov, A. A. ; Shiryaev, A. N.</creatorcontrib><description>We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval $\{0,1,\ldots,T\}$ converges with an exponential rate as $T\to\infty$ to the limit under the assumption that jumps of the random walk are exponentially bounded.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97981093</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Polynomials ; Random variables</subject><ispartof>Theory of probability and its applications, 2005, Vol.49 (2), p.344-354</ispartof><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7112998f777a18aa981aeaa13229c6b48600c406a23dbc6356a641081598e24a3</citedby><cites>FETCH-LOGICAL-c363t-7112998f777a18aa981aeaa13229c6b48600c406a23dbc6356a641081598e24a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Novikov, A. A.</creatorcontrib><creatorcontrib>Shiryaev, A. N.</creatorcontrib><title>On an Effective Solution of the Optimal Stopping Problem for Random Walks</title><title>Theory of probability and its applications</title><description>We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval $\{0,1,\ldots,T\}$ converges with an exponential rate as $T\to\infty$ to the limit under the assumption that jumps of the random walk are exponentially bounded.</description><subject>Applied mathematics</subject><subject>Polynomials</subject><subject>Random variables</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUMtKAzEUDaJgrX6Au-B-NDfvLKVULRQqVtHdcDtNdOp0MiZTwb93St25OotzOC9CLoFdAwhzs2RMMmXVmzPOAnPiiIwGUIXh4I7JaE8Xe_6UnOW8YYxpDmpEZouWYkunIfiqr789XcZm19expTHQ_sPTRdfXW2zoso9dV7fv9DHFVeO3NMREn7Bdxy19xeYzn5OTgE32F384Ji930-fJQzFf3M8mt_OiElr0hQHgztlgjEGwiENb9IggOHeVXkmrGask08jFelVpoTRqCcyCctZziWJMrg6-XYpfO5_7chN3qR0iSwdScCatGkRwEFUp5px8KLs0zEg_JbByf1j57zDxC7IwW7U</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Novikov, A. A.</creator><creator>Shiryaev, A. N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2005</creationdate><title>On an Effective Solution of the Optimal Stopping Problem for Random Walks</title><author>Novikov, A. A. ; Shiryaev, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7112998f777a18aa981aeaa13229c6b48600c406a23dbc6356a641081598e24a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied mathematics</topic><topic>Polynomials</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novikov, A. A.</creatorcontrib><creatorcontrib>Shiryaev, A. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novikov, A. A.</au><au>Shiryaev, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an Effective Solution of the Optimal Stopping Problem for Random Walks</atitle><jtitle>Theory of probability and its applications</jtitle><date>2005</date><risdate>2005</risdate><volume>49</volume><issue>2</issue><spage>344</spage><epage>354</epage><pages>344-354</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval $\{0,1,\ldots,T\}$ converges with an exponential rate as $T\to\infty$ to the limit under the assumption that jumps of the random walk are exponentially bounded.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97981093</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-585X
ispartof Theory of probability and its applications, 2005, Vol.49 (2), p.344-354
issn 0040-585X
1095-7219
language eng
recordid cdi_proquest_journals_914320485
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Polynomials
Random variables
title On an Effective Solution of the Optimal Stopping Problem for Random Walks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20Effective%20Solution%20of%20the%20Optimal%20Stopping%20Problem%20for%20Random%20Walks&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Novikov,%20A.%20A.&rft.date=2005&rft.volume=49&rft.issue=2&rft.spage=344&rft.epage=354&rft.pages=344-354&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97981093&rft_dat=%3Cproquest_cross%3E2554381761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914320485&rft_id=info:pmid/&rfr_iscdi=true