Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA
Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO 2 fluxes and quantify CO 2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO 2 flux were made during September–October 2010 and ranged...
Gespeichert in:
Veröffentlicht in: | Bulletin of volcanology 2012, Vol.74 (1), p.135-141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Bulletin of volcanology |
container_volume | 74 |
creator | Lewicki, Jennifer L. Hilley, George E. Dobeck, Laura Marino, Bruno D. V. |
description | Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO
2
fluxes and quantify CO
2
emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO
2
flux were made during September–October 2010 and ranged from 85 to 1,766 g m
−2
day
−1
. Comparative maps of soil CO
2
flux were simulated and CO
2
emission rates estimated from three accumulation chamber (AC) CO
2
flux surveys. Least-squares inversion of measured eddy covariance CO
2
fluxes and corresponding modeled source weight functions recovered 58–77% of the CO
2
emission rates estimated based on simulated AC soil CO
2
fluxes. Spatial distributions of modeled surface CO
2
fluxes based on EC and AC observations showed moderate to good correspondence (
R
2
= 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO
2
emissions over relatively large areas. |
doi_str_mv | 10.1007/s00445-011-0503-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914302667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554225011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYj-AG-NiTdXp-1-9UgIfiQQDorXptsPLIEttrsk_HtLIHryNId55p2ZB6FbAo8EoHqKAHleZEBIBgWwbH-GBiRnNIOa8HM0AFrUWc0BLtFVjCuA1CyrAfqcaL3Hyu9kcLJVBruNXLp2ib3F2lnbR4N3fq1k6xQezyk2Gxej823EssMzudn47gvPfN920rUPeDx6wIv30TW6sHIdzc2pDtHiefIxfs2m85e38WiaKVoVXcYaaHJZ1aVUuWW8JKXVmhJSyrpoCAeuDK9BW8pYZRulZeJ5rQtpGkk1s2yI7o652-C_exM7sfJ9aNNKwdOHQMuyShA5Qir4GIOxYhvSm2EvCIiDPXG0J5I9cbAn9mnm_hQso5JrG5IcF38HaVEkl4wnjh65mFrt0oS_A_4P_wGbo37A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914302667</pqid></control><display><type>article</type><title>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lewicki, Jennifer L. ; Hilley, George E. ; Dobeck, Laura ; Marino, Bruno D. V.</creator><creatorcontrib>Lewicki, Jennifer L. ; Hilley, George E. ; Dobeck, Laura ; Marino, Bruno D. V.</creatorcontrib><description>Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO
2
fluxes and quantify CO
2
emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO
2
flux were made during September–October 2010 and ranged from 85 to 1,766 g m
−2
day
−1
. Comparative maps of soil CO
2
flux were simulated and CO
2
emission rates estimated from three accumulation chamber (AC) CO
2
flux surveys. Least-squares inversion of measured eddy covariance CO
2
fluxes and corresponding modeled source weight functions recovered 58–77% of the CO
2
emission rates estimated based on simulated AC soil CO
2
fluxes. Spatial distributions of modeled surface CO
2
fluxes based on EC and AC observations showed moderate to good correspondence (
R
2
= 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO
2
emissions over relatively large areas.</description><identifier>ISSN: 0258-8900</identifier><identifier>EISSN: 1432-0819</identifier><identifier>DOI: 10.1007/s00445-011-0503-y</identifier><identifier>CODEN: BUVOEW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Crystalline rocks ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fluctuations ; Geochemistry ; Geology ; Geophysics/Geodesy ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Mineralogy ; Natural hazards: prediction, damages, etc ; Research Article ; Scientific imaging ; Sedimentology ; Spatial distribution ; Volcanoes ; Volcanology</subject><ispartof>Bulletin of volcanology, 2012, Vol.74 (1), p.135-141</ispartof><rights>Springer-Verlag (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</citedby><cites>FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00445-011-0503-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00445-011-0503-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25590039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewicki, Jennifer L.</creatorcontrib><creatorcontrib>Hilley, George E.</creatorcontrib><creatorcontrib>Dobeck, Laura</creatorcontrib><creatorcontrib>Marino, Bruno D. V.</creatorcontrib><title>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</title><title>Bulletin of volcanology</title><addtitle>Bull Volcanol</addtitle><description>Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO
2
fluxes and quantify CO
2
emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO
2
flux were made during September–October 2010 and ranged from 85 to 1,766 g m
−2
day
−1
. Comparative maps of soil CO
2
flux were simulated and CO
2
emission rates estimated from three accumulation chamber (AC) CO
2
flux surveys. Least-squares inversion of measured eddy covariance CO
2
fluxes and corresponding modeled source weight functions recovered 58–77% of the CO
2
emission rates estimated based on simulated AC soil CO
2
fluxes. Spatial distributions of modeled surface CO
2
fluxes based on EC and AC observations showed moderate to good correspondence (
R
2
= 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO
2
emissions over relatively large areas.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Crystalline rocks</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Mineralogy</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Research Article</subject><subject>Scientific imaging</subject><subject>Sedimentology</subject><subject>Spatial distribution</subject><subject>Volcanoes</subject><subject>Volcanology</subject><issn>0258-8900</issn><issn>1432-0819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PAjEQhhujiYj-AG-NiTdXp-1-9UgIfiQQDorXptsPLIEttrsk_HtLIHryNId55p2ZB6FbAo8EoHqKAHleZEBIBgWwbH-GBiRnNIOa8HM0AFrUWc0BLtFVjCuA1CyrAfqcaL3Hyu9kcLJVBruNXLp2ib3F2lnbR4N3fq1k6xQezyk2Gxej823EssMzudn47gvPfN920rUPeDx6wIv30TW6sHIdzc2pDtHiefIxfs2m85e38WiaKVoVXcYaaHJZ1aVUuWW8JKXVmhJSyrpoCAeuDK9BW8pYZRulZeJ5rQtpGkk1s2yI7o652-C_exM7sfJ9aNNKwdOHQMuyShA5Qir4GIOxYhvSm2EvCIiDPXG0J5I9cbAn9mnm_hQso5JrG5IcF38HaVEkl4wnjh65mFrt0oS_A_4P_wGbo37A</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Lewicki, Jennifer L.</creator><creator>Hilley, George E.</creator><creator>Dobeck, Laura</creator><creator>Marino, Bruno D. V.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</title><author>Lewicki, Jennifer L. ; Hilley, George E. ; Dobeck, Laura ; Marino, Bruno D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Crystalline rocks</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Mineralogy</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Research Article</topic><topic>Scientific imaging</topic><topic>Sedimentology</topic><topic>Spatial distribution</topic><topic>Volcanoes</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewicki, Jennifer L.</creatorcontrib><creatorcontrib>Hilley, George E.</creatorcontrib><creatorcontrib>Dobeck, Laura</creatorcontrib><creatorcontrib>Marino, Bruno D. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of volcanology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewicki, Jennifer L.</au><au>Hilley, George E.</au><au>Dobeck, Laura</au><au>Marino, Bruno D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</atitle><jtitle>Bulletin of volcanology</jtitle><stitle>Bull Volcanol</stitle><date>2012</date><risdate>2012</risdate><volume>74</volume><issue>1</issue><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>0258-8900</issn><eissn>1432-0819</eissn><coden>BUVOEW</coden><abstract>Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO
2
fluxes and quantify CO
2
emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO
2
flux were made during September–October 2010 and ranged from 85 to 1,766 g m
−2
day
−1
. Comparative maps of soil CO
2
flux were simulated and CO
2
emission rates estimated from three accumulation chamber (AC) CO
2
flux surveys. Least-squares inversion of measured eddy covariance CO
2
fluxes and corresponding modeled source weight functions recovered 58–77% of the CO
2
emission rates estimated based on simulated AC soil CO
2
fluxes. Spatial distributions of modeled surface CO
2
fluxes based on EC and AC observations showed moderate to good correspondence (
R
2
= 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO
2
emissions over relatively large areas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00445-011-0503-y</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0258-8900 |
ispartof | Bulletin of volcanology, 2012, Vol.74 (1), p.135-141 |
issn | 0258-8900 1432-0819 |
language | eng |
recordid | cdi_proquest_journals_914302667 |
source | SpringerLink Journals - AutoHoldings |
subjects | Carbon dioxide Carbon dioxide emissions Crystalline rocks Earth and Environmental Science Earth Sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Fluctuations Geochemistry Geology Geophysics/Geodesy Igneous and metamorphic rocks petrology, volcanic processes, magmas Mineralogy Natural hazards: prediction, damages, etc Research Article Scientific imaging Sedimentology Spatial distribution Volcanoes Volcanology |
title | Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eddy%20covariance%20imaging%20of%20diffuse%20volcanic%20CO2%20emissions%20at%20Mammoth%20Mountain,%20CA,%20USA&rft.jtitle=Bulletin%20of%20volcanology&rft.au=Lewicki,%20Jennifer%20L.&rft.date=2012&rft.volume=74&rft.issue=1&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=0258-8900&rft.eissn=1432-0819&rft.coden=BUVOEW&rft_id=info:doi/10.1007/s00445-011-0503-y&rft_dat=%3Cproquest_cross%3E2554225011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914302667&rft_id=info:pmid/&rfr_iscdi=true |