Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA

Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO 2 fluxes and quantify CO 2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO 2 flux were made during September–October 2010 and ranged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of volcanology 2012, Vol.74 (1), p.135-141
Hauptverfasser: Lewicki, Jennifer L., Hilley, George E., Dobeck, Laura, Marino, Bruno D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 135
container_title Bulletin of volcanology
container_volume 74
creator Lewicki, Jennifer L.
Hilley, George E.
Dobeck, Laura
Marino, Bruno D. V.
description Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO 2 fluxes and quantify CO 2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO 2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m −2  day −1 . Comparative maps of soil CO 2 flux were simulated and CO 2 emission rates estimated from three accumulation chamber (AC) CO 2 flux surveys. Least-squares inversion of measured eddy covariance CO 2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO 2 emission rates estimated based on simulated AC soil CO 2 fluxes. Spatial distributions of modeled surface CO 2 fluxes based on EC and AC observations showed moderate to good correspondence ( R 2  = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO 2 emissions over relatively large areas.
doi_str_mv 10.1007/s00445-011-0503-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914302667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554225011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYj-AG-NiTdXp-1-9UgIfiQQDorXptsPLIEttrsk_HtLIHryNId55p2ZB6FbAo8EoHqKAHleZEBIBgWwbH-GBiRnNIOa8HM0AFrUWc0BLtFVjCuA1CyrAfqcaL3Hyu9kcLJVBruNXLp2ib3F2lnbR4N3fq1k6xQezyk2Gxej823EssMzudn47gvPfN920rUPeDx6wIv30TW6sHIdzc2pDtHiefIxfs2m85e38WiaKVoVXcYaaHJZ1aVUuWW8JKXVmhJSyrpoCAeuDK9BW8pYZRulZeJ5rQtpGkk1s2yI7o652-C_exM7sfJ9aNNKwdOHQMuyShA5Qir4GIOxYhvSm2EvCIiDPXG0J5I9cbAn9mnm_hQso5JrG5IcF38HaVEkl4wnjh65mFrt0oS_A_4P_wGbo37A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914302667</pqid></control><display><type>article</type><title>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lewicki, Jennifer L. ; Hilley, George E. ; Dobeck, Laura ; Marino, Bruno D. V.</creator><creatorcontrib>Lewicki, Jennifer L. ; Hilley, George E. ; Dobeck, Laura ; Marino, Bruno D. V.</creatorcontrib><description>Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO 2 fluxes and quantify CO 2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO 2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m −2  day −1 . Comparative maps of soil CO 2 flux were simulated and CO 2 emission rates estimated from three accumulation chamber (AC) CO 2 flux surveys. Least-squares inversion of measured eddy covariance CO 2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO 2 emission rates estimated based on simulated AC soil CO 2 fluxes. Spatial distributions of modeled surface CO 2 fluxes based on EC and AC observations showed moderate to good correspondence ( R 2  = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO 2 emissions over relatively large areas.</description><identifier>ISSN: 0258-8900</identifier><identifier>EISSN: 1432-0819</identifier><identifier>DOI: 10.1007/s00445-011-0503-y</identifier><identifier>CODEN: BUVOEW</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Crystalline rocks ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fluctuations ; Geochemistry ; Geology ; Geophysics/Geodesy ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Mineralogy ; Natural hazards: prediction, damages, etc ; Research Article ; Scientific imaging ; Sedimentology ; Spatial distribution ; Volcanoes ; Volcanology</subject><ispartof>Bulletin of volcanology, 2012, Vol.74 (1), p.135-141</ispartof><rights>Springer-Verlag (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</citedby><cites>FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00445-011-0503-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00445-011-0503-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25590039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewicki, Jennifer L.</creatorcontrib><creatorcontrib>Hilley, George E.</creatorcontrib><creatorcontrib>Dobeck, Laura</creatorcontrib><creatorcontrib>Marino, Bruno D. V.</creatorcontrib><title>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</title><title>Bulletin of volcanology</title><addtitle>Bull Volcanol</addtitle><description>Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO 2 fluxes and quantify CO 2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO 2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m −2  day −1 . Comparative maps of soil CO 2 flux were simulated and CO 2 emission rates estimated from three accumulation chamber (AC) CO 2 flux surveys. Least-squares inversion of measured eddy covariance CO 2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO 2 emission rates estimated based on simulated AC soil CO 2 fluxes. Spatial distributions of modeled surface CO 2 fluxes based on EC and AC observations showed moderate to good correspondence ( R 2  = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO 2 emissions over relatively large areas.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Crystalline rocks</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fluctuations</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Mineralogy</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Research Article</subject><subject>Scientific imaging</subject><subject>Sedimentology</subject><subject>Spatial distribution</subject><subject>Volcanoes</subject><subject>Volcanology</subject><issn>0258-8900</issn><issn>1432-0819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PAjEQhhujiYj-AG-NiTdXp-1-9UgIfiQQDorXptsPLIEttrsk_HtLIHryNId55p2ZB6FbAo8EoHqKAHleZEBIBgWwbH-GBiRnNIOa8HM0AFrUWc0BLtFVjCuA1CyrAfqcaL3Hyu9kcLJVBruNXLp2ib3F2lnbR4N3fq1k6xQezyk2Gxej823EssMzudn47gvPfN920rUPeDx6wIv30TW6sHIdzc2pDtHiefIxfs2m85e38WiaKVoVXcYaaHJZ1aVUuWW8JKXVmhJSyrpoCAeuDK9BW8pYZRulZeJ5rQtpGkk1s2yI7o652-C_exM7sfJ9aNNKwdOHQMuyShA5Qir4GIOxYhvSm2EvCIiDPXG0J5I9cbAn9mnm_hQso5JrG5IcF38HaVEkl4wnjh65mFrt0oS_A_4P_wGbo37A</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Lewicki, Jennifer L.</creator><creator>Hilley, George E.</creator><creator>Dobeck, Laura</creator><creator>Marino, Bruno D. V.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</title><author>Lewicki, Jennifer L. ; Hilley, George E. ; Dobeck, Laura ; Marino, Bruno D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-3b0b4a786ac4f39616fdd2116a85b1909ce980df2337fbcdab0b98d5aeba2d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Crystalline rocks</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fluctuations</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Mineralogy</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Research Article</topic><topic>Scientific imaging</topic><topic>Sedimentology</topic><topic>Spatial distribution</topic><topic>Volcanoes</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewicki, Jennifer L.</creatorcontrib><creatorcontrib>Hilley, George E.</creatorcontrib><creatorcontrib>Dobeck, Laura</creatorcontrib><creatorcontrib>Marino, Bruno D. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of volcanology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewicki, Jennifer L.</au><au>Hilley, George E.</au><au>Dobeck, Laura</au><au>Marino, Bruno D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA</atitle><jtitle>Bulletin of volcanology</jtitle><stitle>Bull Volcanol</stitle><date>2012</date><risdate>2012</risdate><volume>74</volume><issue>1</issue><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>0258-8900</issn><eissn>1432-0819</eissn><coden>BUVOEW</coden><abstract>Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO 2 fluxes and quantify CO 2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO 2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m −2  day −1 . Comparative maps of soil CO 2 flux were simulated and CO 2 emission rates estimated from three accumulation chamber (AC) CO 2 flux surveys. Least-squares inversion of measured eddy covariance CO 2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO 2 emission rates estimated based on simulated AC soil CO 2 fluxes. Spatial distributions of modeled surface CO 2 fluxes based on EC and AC observations showed moderate to good correspondence ( R 2  = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO 2 emissions over relatively large areas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00445-011-0503-y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0258-8900
ispartof Bulletin of volcanology, 2012, Vol.74 (1), p.135-141
issn 0258-8900
1432-0819
language eng
recordid cdi_proquest_journals_914302667
source SpringerLink Journals - AutoHoldings
subjects Carbon dioxide
Carbon dioxide emissions
Crystalline rocks
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Fluctuations
Geochemistry
Geology
Geophysics/Geodesy
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Mineralogy
Natural hazards: prediction, damages, etc
Research Article
Scientific imaging
Sedimentology
Spatial distribution
Volcanoes
Volcanology
title Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eddy%20covariance%20imaging%20of%20diffuse%20volcanic%20CO2%20emissions%20at%20Mammoth%20Mountain,%20CA,%20USA&rft.jtitle=Bulletin%20of%20volcanology&rft.au=Lewicki,%20Jennifer%20L.&rft.date=2012&rft.volume=74&rft.issue=1&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=0258-8900&rft.eissn=1432-0819&rft.coden=BUVOEW&rft_id=info:doi/10.1007/s00445-011-0503-y&rft_dat=%3Cproquest_cross%3E2554225011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914302667&rft_id=info:pmid/&rfr_iscdi=true