Cost-Delay Tradeoffs for Two-Way Relay Networks

We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2011-12, Vol.10 (12), p.4100-4109
Hauptverfasser: Ciftcioglu, E. N., Sagduyu, Y. E., Berry, R. A., Yener, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4109
container_issue 12
container_start_page 4100
container_title IEEE transactions on wireless communications
container_volume 10
creator Ciftcioglu, E. N.
Sagduyu, Y. E.
Berry, R. A.
Yener, A.
description We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.
doi_str_mv 10.1109/TWC.2011.101211.101360
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_914284778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6059446</ieee_id><sourcerecordid>2554181001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKu_QJAiCF62nXxnj1I_oShIpceQ7k6gddvUpKX035u6pQdPEzLPvMw8hNxQ6FMK5WA8GfYZUNqnQFlbuIIT0qFSmoIxYU73b64KyrQ6JxcpzQGoVlJ2yGAY0rp4xMbteuPoagzep54PsTfehmKSfz__eu-43ob4nS7JmXdNwqtD7ZKv56fx8LUYfby8DR9GRSUoXxc1r0FMNQBX6BiHiotKcS9wWtelUlAzaZxjABo9UqMrTV3JhJdQGuQIvEvu29xVDD8bTGu7mKUKm8YtMWySzUeCKY3Mt3bJ7T90HjZxmbezJRXMCK1NhlQLVTGkFNHbVZwtXNzlJLvXaLNGu9doW4221ZgH7w7pLlWu8dEtq1k6TjPJtQYqMnfdcjNEPLYVyFIIxX8BDp94aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914284778</pqid></control><display><type>article</type><title>Cost-Delay Tradeoffs for Two-Way Relay Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ciftcioglu, E. N. ; Sagduyu, Y. E. ; Berry, R. A. ; Yener, A.</creator><creatorcontrib>Ciftcioglu, E. N. ; Sagduyu, Y. E. ; Berry, R. A. ; Yener, A.</creatorcontrib><description>We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2011.101211.101360</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; competition ; cooperation ; Cost sharing ; delay ; Exact sciences and technology ; Network coding ; Networks ; Packet transmission ; Policies ; queue stability ; Queues ; Relay ; Relays ; Resource management ; Signal to noise ratio ; Statistics ; Stochastic processes ; stochastic traffic ; Studies ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; two-way relaying ; Upper bound ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2011-12, Vol.10 (12), p.4100-4109</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</citedby><cites>FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6059446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6059446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25377014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciftcioglu, E. N.</creatorcontrib><creatorcontrib>Sagduyu, Y. E.</creatorcontrib><creatorcontrib>Berry, R. A.</creatorcontrib><creatorcontrib>Yener, A.</creatorcontrib><title>Cost-Delay Tradeoffs for Two-Way Relay Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>competition</subject><subject>cooperation</subject><subject>Cost sharing</subject><subject>delay</subject><subject>Exact sciences and technology</subject><subject>Network coding</subject><subject>Networks</subject><subject>Packet transmission</subject><subject>Policies</subject><subject>queue stability</subject><subject>Queues</subject><subject>Relay</subject><subject>Relays</subject><subject>Resource management</subject><subject>Signal to noise ratio</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>stochastic traffic</subject><subject>Studies</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>two-way relaying</subject><subject>Upper bound</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKu_QJAiCF62nXxnj1I_oShIpceQ7k6gddvUpKX035u6pQdPEzLPvMw8hNxQ6FMK5WA8GfYZUNqnQFlbuIIT0qFSmoIxYU73b64KyrQ6JxcpzQGoVlJ2yGAY0rp4xMbteuPoagzep54PsTfehmKSfz__eu-43ob4nS7JmXdNwqtD7ZKv56fx8LUYfby8DR9GRSUoXxc1r0FMNQBX6BiHiotKcS9wWtelUlAzaZxjABo9UqMrTV3JhJdQGuQIvEvu29xVDD8bTGu7mKUKm8YtMWySzUeCKY3Mt3bJ7T90HjZxmbezJRXMCK1NhlQLVTGkFNHbVZwtXNzlJLvXaLNGu9doW4221ZgH7w7pLlWu8dEtq1k6TjPJtQYqMnfdcjNEPLYVyFIIxX8BDp94aA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Ciftcioglu, E. N.</creator><creator>Sagduyu, Y. E.</creator><creator>Berry, R. A.</creator><creator>Yener, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111201</creationdate><title>Cost-Delay Tradeoffs for Two-Way Relay Networks</title><author>Ciftcioglu, E. N. ; Sagduyu, Y. E. ; Berry, R. A. ; Yener, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>competition</topic><topic>cooperation</topic><topic>Cost sharing</topic><topic>delay</topic><topic>Exact sciences and technology</topic><topic>Network coding</topic><topic>Networks</topic><topic>Packet transmission</topic><topic>Policies</topic><topic>queue stability</topic><topic>Queues</topic><topic>Relay</topic><topic>Relays</topic><topic>Resource management</topic><topic>Signal to noise ratio</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>stochastic traffic</topic><topic>Studies</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>two-way relaying</topic><topic>Upper bound</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciftcioglu, E. N.</creatorcontrib><creatorcontrib>Sagduyu, Y. E.</creatorcontrib><creatorcontrib>Berry, R. A.</creatorcontrib><creatorcontrib>Yener, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ciftcioglu, E. N.</au><au>Sagduyu, Y. E.</au><au>Berry, R. A.</au><au>Yener, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Delay Tradeoffs for Two-Way Relay Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>10</volume><issue>12</issue><spage>4100</spage><epage>4109</epage><pages>4100-4109</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2011.101211.101360</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2011-12, Vol.10 (12), p.4100-4109
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_914284778
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
competition
cooperation
Cost sharing
delay
Exact sciences and technology
Network coding
Networks
Packet transmission
Policies
queue stability
Queues
Relay
Relays
Resource management
Signal to noise ratio
Statistics
Stochastic processes
stochastic traffic
Studies
Switching and signalling
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teletraffic
two-way relaying
Upper bound
Wireless communication
title Cost-Delay Tradeoffs for Two-Way Relay Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Delay%20Tradeoffs%20for%20Two-Way%20Relay%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ciftcioglu,%20E.%20N.&rft.date=2011-12-01&rft.volume=10&rft.issue=12&rft.spage=4100&rft.epage=4109&rft.pages=4100-4109&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2011.101211.101360&rft_dat=%3Cproquest_RIE%3E2554181001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914284778&rft_id=info:pmid/&rft_ieee_id=6059446&rfr_iscdi=true