Cost-Delay Tradeoffs for Two-Way Relay Networks
We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2011-12, Vol.10 (12), p.4100-4109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4109 |
---|---|
container_issue | 12 |
container_start_page | 4100 |
container_title | IEEE transactions on wireless communications |
container_volume | 10 |
creator | Ciftcioglu, E. N. Sagduyu, Y. E. Berry, R. A. Yener, A. |
description | We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well. |
doi_str_mv | 10.1109/TWC.2011.101211.101360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_914284778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6059446</ieee_id><sourcerecordid>2554181001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKu_QJAiCF62nXxnj1I_oShIpceQ7k6gddvUpKX035u6pQdPEzLPvMw8hNxQ6FMK5WA8GfYZUNqnQFlbuIIT0qFSmoIxYU73b64KyrQ6JxcpzQGoVlJ2yGAY0rp4xMbteuPoagzep54PsTfehmKSfz__eu-43ob4nS7JmXdNwqtD7ZKv56fx8LUYfby8DR9GRSUoXxc1r0FMNQBX6BiHiotKcS9wWtelUlAzaZxjABo9UqMrTV3JhJdQGuQIvEvu29xVDD8bTGu7mKUKm8YtMWySzUeCKY3Mt3bJ7T90HjZxmbezJRXMCK1NhlQLVTGkFNHbVZwtXNzlJLvXaLNGu9doW4221ZgH7w7pLlWu8dEtq1k6TjPJtQYqMnfdcjNEPLYVyFIIxX8BDp94aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914284778</pqid></control><display><type>article</type><title>Cost-Delay Tradeoffs for Two-Way Relay Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ciftcioglu, E. N. ; Sagduyu, Y. E. ; Berry, R. A. ; Yener, A.</creator><creatorcontrib>Ciftcioglu, E. N. ; Sagduyu, Y. E. ; Berry, R. A. ; Yener, A.</creatorcontrib><description>We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2011.101211.101360</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; competition ; cooperation ; Cost sharing ; delay ; Exact sciences and technology ; Network coding ; Networks ; Packet transmission ; Policies ; queue stability ; Queues ; Relay ; Relays ; Resource management ; Signal to noise ratio ; Statistics ; Stochastic processes ; stochastic traffic ; Studies ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; two-way relaying ; Upper bound ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2011-12, Vol.10 (12), p.4100-4109</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</citedby><cites>FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6059446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6059446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25377014$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciftcioglu, E. N.</creatorcontrib><creatorcontrib>Sagduyu, Y. E.</creatorcontrib><creatorcontrib>Berry, R. A.</creatorcontrib><creatorcontrib>Yener, A.</creatorcontrib><title>Cost-Delay Tradeoffs for Two-Way Relay Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>competition</subject><subject>cooperation</subject><subject>Cost sharing</subject><subject>delay</subject><subject>Exact sciences and technology</subject><subject>Network coding</subject><subject>Networks</subject><subject>Packet transmission</subject><subject>Policies</subject><subject>queue stability</subject><subject>Queues</subject><subject>Relay</subject><subject>Relays</subject><subject>Resource management</subject><subject>Signal to noise ratio</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>stochastic traffic</subject><subject>Studies</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>two-way relaying</subject><subject>Upper bound</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKu_QJAiCF62nXxnj1I_oShIpceQ7k6gddvUpKX035u6pQdPEzLPvMw8hNxQ6FMK5WA8GfYZUNqnQFlbuIIT0qFSmoIxYU73b64KyrQ6JxcpzQGoVlJ2yGAY0rp4xMbteuPoagzep54PsTfehmKSfz__eu-43ob4nS7JmXdNwqtD7ZKv56fx8LUYfby8DR9GRSUoXxc1r0FMNQBX6BiHiotKcS9wWtelUlAzaZxjABo9UqMrTV3JhJdQGuQIvEvu29xVDD8bTGu7mKUKm8YtMWySzUeCKY3Mt3bJ7T90HjZxmbezJRXMCK1NhlQLVTGkFNHbVZwtXNzlJLvXaLNGu9doW4221ZgH7w7pLlWu8dEtq1k6TjPJtQYqMnfdcjNEPLYVyFIIxX8BDp94aA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Ciftcioglu, E. N.</creator><creator>Sagduyu, Y. E.</creator><creator>Berry, R. A.</creator><creator>Yener, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111201</creationdate><title>Cost-Delay Tradeoffs for Two-Way Relay Networks</title><author>Ciftcioglu, E. N. ; Sagduyu, Y. E. ; Berry, R. A. ; Yener, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-d3d04b70036ea230c34c63f4ebdd9660d258aa2007efe187c71a924f5098e3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>competition</topic><topic>cooperation</topic><topic>Cost sharing</topic><topic>delay</topic><topic>Exact sciences and technology</topic><topic>Network coding</topic><topic>Networks</topic><topic>Packet transmission</topic><topic>Policies</topic><topic>queue stability</topic><topic>Queues</topic><topic>Relay</topic><topic>Relays</topic><topic>Resource management</topic><topic>Signal to noise ratio</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>stochastic traffic</topic><topic>Studies</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>two-way relaying</topic><topic>Upper bound</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciftcioglu, E. N.</creatorcontrib><creatorcontrib>Sagduyu, Y. E.</creatorcontrib><creatorcontrib>Berry, R. A.</creatorcontrib><creatorcontrib>Yener, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ciftcioglu, E. N.</au><au>Sagduyu, Y. E.</au><au>Berry, R. A.</au><au>Yener, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost-Delay Tradeoffs for Two-Way Relay Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>10</volume><issue>12</issue><spage>4100</spage><epage>4109</epage><pages>4100-4109</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We consider two sources in a wireless network exchanging stochastically varying traffic using an intermediate relay. Each relay use incurs some cost, which, for example, could be transmission energy. This cost is shared between the sources when packets from both are transmitted simultaneously by the relay using network coding. If the relay transmits a packet originating from one source only, the cost is incurred by that source only. In this setting, we study transmission policies that tradeoff the average cost with the average packet delay. We first present the cost-delay tradeoff for a centralized scheme using Lyapunov stability arguments. Next, we consider a distributed policy, where each source aims to optimize its own cost-delay tradeoff. We determine the Nash equilibrium of the resulting non-cooperative game and show that it performs worse than the centralized algorithm. To overcome this limitation, we introduce a pricing mechanism at the relay, which is shown to achieve the centralized performance. These algorithms, though oblivious to the arrival statistics, do require global knowledge of queue backlogs. Lastly, we consider distributed algorithms that overcome this requirement. Among those, we observe that simple queue-length threshold algorithms perform remarkably well.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2011.101211.101360</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2011-12, Vol.10 (12), p.4100-4109 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_914284778 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences competition cooperation Cost sharing delay Exact sciences and technology Network coding Networks Packet transmission Policies queue stability Queues Relay Relays Resource management Signal to noise ratio Statistics Stochastic processes stochastic traffic Studies Switching and signalling Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teletraffic two-way relaying Upper bound Wireless communication |
title | Cost-Delay Tradeoffs for Two-Way Relay Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost-Delay%20Tradeoffs%20for%20Two-Way%20Relay%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ciftcioglu,%20E.%20N.&rft.date=2011-12-01&rft.volume=10&rft.issue=12&rft.spage=4100&rft.epage=4109&rft.pages=4100-4109&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2011.101211.101360&rft_dat=%3Cproquest_RIE%3E2554181001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914284778&rft_id=info:pmid/&rft_ieee_id=6059446&rfr_iscdi=true |