A comparison of subset selection and adaptive basis function construction for polynomial regression model building
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not kno...
Gespeichert in:
Veröffentlicht in: | Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne Datorzinātne, 2009-01, Vol.38 (38), p.187-197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 38 |
container_start_page | 187 |
container_title | Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne |
container_volume | 38 |
creator | Jēkabsons, Gints Lavendels, Jurijs |
description | The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines. |
doi_str_mv | 10.2478/v10143-009-0017-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914162614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553352311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2557-13809cd351a5bf85d217a957d8fdbc2ba3e72132aa590c52eb00999f75c0ae013</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRb0AiVL4AHYW-4AfcRzvqCqeqoSQClvLsZ3KJYmDnRT697gKghWLkWc8c89oLgAXGF2RnJfXO4xwTjOERArMM34EZjhHKckFPQGnMW4RKmgh0AyEBdS-7VVw0XfQ1zCOVbQDjLaxenDpT3UGKqP6we0srFR0EdZjN_W07-IQxqmofYC9b_adb51qYLCbYGM8dFpvbAOr0TXGdZszcFyrJtrzn3cOXu9u18uHbPV8_7hcrDJNGOMZpiUS2lCGFavqkhmCuRKMm7I2lSaVopYTTIlSTCDNiK3SwULUnGmkLMJ0Di4nbh_8x2jjILd-DF1aKQXOcUGK5NIc4GlIBx9jsLXsg2tV2EuM5MFNObkpE1we3JQ8aW4mzadqBhtMOnTcp-SP_7-2pCUuD4hsQrg42K_fnSq8y4JTzuTLOpeMcnH_xHL5Rr8B0I2PKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914162614</pqid></control><display><type>article</type><title>A comparison of subset selection and adaptive basis function construction for polynomial regression model building</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jēkabsons, Gints ; Lavendels, Jurijs</creator><creatorcontrib>Jēkabsons, Gints ; Lavendels, Jurijs</creatorcontrib><description>The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.</description><identifier>ISSN: 1407-7493</identifier><identifier>DOI: 10.2478/v10143-009-0017-7</identifier><language>eng</language><publisher>Riga: Versita</publisher><subject>basis function construction ; heuristic search ; model ensembling ; Polynomial regression ; regression modelling</subject><ispartof>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne, 2009-01, Vol.38 (38), p.187-197</ispartof><rights>Copyright Riga Technical University 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2557-13809cd351a5bf85d217a957d8fdbc2ba3e72132aa590c52eb00999f75c0ae013</citedby><cites>FETCH-LOGICAL-c2557-13809cd351a5bf85d217a957d8fdbc2ba3e72132aa590c52eb00999f75c0ae013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jēkabsons, Gints</creatorcontrib><creatorcontrib>Lavendels, Jurijs</creatorcontrib><title>A comparison of subset selection and adaptive basis function construction for polynomial regression model building</title><title>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne</title><description>The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.</description><subject>basis function construction</subject><subject>heuristic search</subject><subject>model ensembling</subject><subject>Polynomial regression</subject><subject>regression modelling</subject><issn>1407-7493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRb0AiVL4AHYW-4AfcRzvqCqeqoSQClvLsZ3KJYmDnRT697gKghWLkWc8c89oLgAXGF2RnJfXO4xwTjOERArMM34EZjhHKckFPQGnMW4RKmgh0AyEBdS-7VVw0XfQ1zCOVbQDjLaxenDpT3UGKqP6we0srFR0EdZjN_W07-IQxqmofYC9b_adb51qYLCbYGM8dFpvbAOr0TXGdZszcFyrJtrzn3cOXu9u18uHbPV8_7hcrDJNGOMZpiUS2lCGFavqkhmCuRKMm7I2lSaVopYTTIlSTCDNiK3SwULUnGmkLMJ0Di4nbh_8x2jjILd-DF1aKQXOcUGK5NIc4GlIBx9jsLXsg2tV2EuM5MFNObkpE1we3JQ8aW4mzadqBhtMOnTcp-SP_7-2pCUuD4hsQrg42K_fnSq8y4JTzuTLOpeMcnH_xHL5Rr8B0I2PKg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Jēkabsons, Gints</creator><creator>Lavendels, Jurijs</creator><general>Versita</general><general>Riga Technical University</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20090101</creationdate><title>A comparison of subset selection and adaptive basis function construction for polynomial regression model building</title><author>Jēkabsons, Gints ; Lavendels, Jurijs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2557-13809cd351a5bf85d217a957d8fdbc2ba3e72132aa590c52eb00999f75c0ae013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>basis function construction</topic><topic>heuristic search</topic><topic>model ensembling</topic><topic>Polynomial regression</topic><topic>regression modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jēkabsons, Gints</creatorcontrib><creatorcontrib>Lavendels, Jurijs</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jēkabsons, Gints</au><au>Lavendels, Jurijs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of subset selection and adaptive basis function construction for polynomial regression model building</atitle><jtitle>Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>38</volume><issue>38</issue><spage>187</spage><epage>197</epage><pages>187-197</pages><issn>1407-7493</issn><abstract>The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed - a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection - letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building - subset selection and ABFC - both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods - Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.</abstract><cop>Riga</cop><pub>Versita</pub><doi>10.2478/v10143-009-0017-7</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1407-7493 |
ispartof | Rīgas Tehniskās universitātes zinātniskie raksti. Scientific proceedings of Riga Technical university. 5. Sērija, Datorzinātne, 2009-01, Vol.38 (38), p.187-197 |
issn | 1407-7493 |
language | eng |
recordid | cdi_proquest_journals_914162614 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | basis function construction heuristic search model ensembling Polynomial regression regression modelling |
title | A comparison of subset selection and adaptive basis function construction for polynomial regression model building |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20subset%20selection%20and%20adaptive%20basis%20function%20construction%20for%20polynomial%20regression%20model%20building&rft.jtitle=R%C4%ABgas%20Tehnisk%C4%81s%20universit%C4%81tes%20zin%C4%81tniskie%20raksti.%20Scientific%20proceedings%20of%20Riga%20Technical%20university.%205.%20S%C4%93rija,%20Datorzin%C4%81tne&rft.au=J%C4%93kabsons,%20Gints&rft.date=2009-01-01&rft.volume=38&rft.issue=38&rft.spage=187&rft.epage=197&rft.pages=187-197&rft.issn=1407-7493&rft_id=info:doi/10.2478/v10143-009-0017-7&rft_dat=%3Cproquest_cross%3E2553352311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914162614&rft_id=info:pmid/&rfr_iscdi=true |