Effects of particle energy on proton-induced single-event latchup
The effect of proton energy on single-event latchup (SEL) in present-day SRAMs is investigated over a wide range of proton energies and temperature. SRAMs from five different vendors were irradiated at proton energies from 20 to 500 MeV and at temperatures of 25/spl deg/ and 85/spl deg/C. For the SR...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2005-12, Vol.52 (6), p.2622-2629 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2629 |
---|---|
container_issue | 6 |
container_start_page | 2622 |
container_title | IEEE transactions on nuclear science |
container_volume | 52 |
creator | Schwank, J.R. Shaneyfelt, M.R. Baggio, J. Dodd, P.E. Felix, J.A. Ferlet-Cavrois, V. Paillet, P. Lambert, D. Sexton, F.W. Hash, G.L. Blackmore, E. |
description | The effect of proton energy on single-event latchup (SEL) in present-day SRAMs is investigated over a wide range of proton energies and temperature. SRAMs from five different vendors were irradiated at proton energies from 20 to 500 MeV and at temperatures of 25/spl deg/ and 85/spl deg/C. For the SRAMs and radiation conditions examined in this work, proton energy SEL thresholds varied from as low as 20 MeV to as high as 490MeV. To gain insight into the observed effects, the heavy-ion SEL linear energy transfer (LET) thresholds of the SRAMs were measured and compared to high-energy transport calculations of proton interactions with different materials. For some SRAMs that showed proton-induced SEL, the heavy-ion SEL threshold LET was as high as 25MeV-cm/sup 2//mg. Proton interactions with Si cannot generate nuclear recoils with LETs this large. Our nuclear scattering calculations suggest that the nuclear recoils are generated by proton interactions with tungsten. Tungsten plugs are commonly used in most high-density ICs fabricated today, including SRAMs. These results demonstrate that for system applications where latchups cannot be tolerated, SEL hardness assurance testing should be performed at a proton energy at least as high as the highest proton energy present in the system environment. Moreover, the best procedure to ensure that ICs will be latchup free in proton environments may be to use a heavy-ion source with LETs /spl ges/40 MeV-cm/sup 2//mg. |
doi_str_mv | 10.1109/TNS.2005.860672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_913965740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1589248</ieee_id><sourcerecordid>28020327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-fdd39a957a050044db4039ea693482c1470f52ab6764b5e1fd1990a91c37c2423</originalsourceid><addsrcrecordid>eNp9kc1Lw0AUxBdRsFbPHrwED4qHtG-_kt1jKdUKRQ_W87LdvLQpManZpND_3i0RBQ-eHg9-M8wwhFxTGFEKerx8eRsxADlSCSQpOyEDKqWKqUzVKRkAUBVrofU5ufB-G14hQQ7IZJbn6Fof1Xm0s01buBIjrLBZH6K6inZN3dZVXFRZ5zCLfFGtS4xxj1UblbZ1m253Sc5yW3q8-r5D8v44W07n8eL16Xk6WcROSNrGeZZxbbVMLUgAIbKVAK7RJpoLxRwVKeSS2VWSJmIlkeYZ1Rqspo6njgnGh-Sh993Y0uya4sM2B1PbwswnC-PQGuBMSc5gTwN737Mh_2eHvjUfhXdYlrbCuvNGU5EkoCUP5N2_JFPAgnEawNs_4Lbumio0Dm5cJzINfYZk3EOuqb1vMP8JSsEcVzJhJXNcyfQrBcVNrygQ8ZeWSjOh-BfmTYqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913965740</pqid></control><display><type>article</type><title>Effects of particle energy on proton-induced single-event latchup</title><source>IEEE Electronic Library (IEL)</source><creator>Schwank, J.R. ; Shaneyfelt, M.R. ; Baggio, J. ; Dodd, P.E. ; Felix, J.A. ; Ferlet-Cavrois, V. ; Paillet, P. ; Lambert, D. ; Sexton, F.W. ; Hash, G.L. ; Blackmore, E.</creator><creatorcontrib>Schwank, J.R. ; Shaneyfelt, M.R. ; Baggio, J. ; Dodd, P.E. ; Felix, J.A. ; Ferlet-Cavrois, V. ; Paillet, P. ; Lambert, D. ; Sexton, F.W. ; Hash, G.L. ; Blackmore, E.</creatorcontrib><description>The effect of proton energy on single-event latchup (SEL) in present-day SRAMs is investigated over a wide range of proton energies and temperature. SRAMs from five different vendors were irradiated at proton energies from 20 to 500 MeV and at temperatures of 25/spl deg/ and 85/spl deg/C. For the SRAMs and radiation conditions examined in this work, proton energy SEL thresholds varied from as low as 20 MeV to as high as 490MeV. To gain insight into the observed effects, the heavy-ion SEL linear energy transfer (LET) thresholds of the SRAMs were measured and compared to high-energy transport calculations of proton interactions with different materials. For some SRAMs that showed proton-induced SEL, the heavy-ion SEL threshold LET was as high as 25MeV-cm/sup 2//mg. Proton interactions with Si cannot generate nuclear recoils with LETs this large. Our nuclear scattering calculations suggest that the nuclear recoils are generated by proton interactions with tungsten. Tungsten plugs are commonly used in most high-density ICs fabricated today, including SRAMs. These results demonstrate that for system applications where latchups cannot be tolerated, SEL hardness assurance testing should be performed at a proton energy at least as high as the highest proton energy present in the system environment. Moreover, the best procedure to ensure that ICs will be latchup free in proton environments may be to use a heavy-ion source with LETs /spl ges/40 MeV-cm/sup 2//mg.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2005.860672</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Energy exchange ; Energy measurement ; Energy transfer ; Engineering Sciences ; Gain ; Gain measurement ; Hardness ; Mathematical analysis ; Micro and nanotechnologies ; Microelectronics ; Nuclear power generation ; Particle scattering ; Plugs ; Proton energy ; Protons ; Recoil ; System testing ; Temperature distribution ; Thresholds ; Tungsten</subject><ispartof>IEEE transactions on nuclear science, 2005-12, Vol.52 (6), p.2622-2629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-fdd39a957a050044db4039ea693482c1470f52ab6764b5e1fd1990a91c37c2423</citedby><cites>FETCH-LOGICAL-c451t-fdd39a957a050044db4039ea693482c1470f52ab6764b5e1fd1990a91c37c2423</cites><orcidid>0000-0001-8701-7283 ; 0000-0003-2150-4315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1589248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,782,786,798,887,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1589248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://cea.hal.science/cea-03285320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwank, J.R.</creatorcontrib><creatorcontrib>Shaneyfelt, M.R.</creatorcontrib><creatorcontrib>Baggio, J.</creatorcontrib><creatorcontrib>Dodd, P.E.</creatorcontrib><creatorcontrib>Felix, J.A.</creatorcontrib><creatorcontrib>Ferlet-Cavrois, V.</creatorcontrib><creatorcontrib>Paillet, P.</creatorcontrib><creatorcontrib>Lambert, D.</creatorcontrib><creatorcontrib>Sexton, F.W.</creatorcontrib><creatorcontrib>Hash, G.L.</creatorcontrib><creatorcontrib>Blackmore, E.</creatorcontrib><title>Effects of particle energy on proton-induced single-event latchup</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The effect of proton energy on single-event latchup (SEL) in present-day SRAMs is investigated over a wide range of proton energies and temperature. SRAMs from five different vendors were irradiated at proton energies from 20 to 500 MeV and at temperatures of 25/spl deg/ and 85/spl deg/C. For the SRAMs and radiation conditions examined in this work, proton energy SEL thresholds varied from as low as 20 MeV to as high as 490MeV. To gain insight into the observed effects, the heavy-ion SEL linear energy transfer (LET) thresholds of the SRAMs were measured and compared to high-energy transport calculations of proton interactions with different materials. For some SRAMs that showed proton-induced SEL, the heavy-ion SEL threshold LET was as high as 25MeV-cm/sup 2//mg. Proton interactions with Si cannot generate nuclear recoils with LETs this large. Our nuclear scattering calculations suggest that the nuclear recoils are generated by proton interactions with tungsten. Tungsten plugs are commonly used in most high-density ICs fabricated today, including SRAMs. These results demonstrate that for system applications where latchups cannot be tolerated, SEL hardness assurance testing should be performed at a proton energy at least as high as the highest proton energy present in the system environment. Moreover, the best procedure to ensure that ICs will be latchup free in proton environments may be to use a heavy-ion source with LETs /spl ges/40 MeV-cm/sup 2//mg.</description><subject>Energy exchange</subject><subject>Energy measurement</subject><subject>Energy transfer</subject><subject>Engineering Sciences</subject><subject>Gain</subject><subject>Gain measurement</subject><subject>Hardness</subject><subject>Mathematical analysis</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nuclear power generation</subject><subject>Particle scattering</subject><subject>Plugs</subject><subject>Proton energy</subject><subject>Protons</subject><subject>Recoil</subject><subject>System testing</subject><subject>Temperature distribution</subject><subject>Thresholds</subject><subject>Tungsten</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1Lw0AUxBdRsFbPHrwED4qHtG-_kt1jKdUKRQ_W87LdvLQpManZpND_3i0RBQ-eHg9-M8wwhFxTGFEKerx8eRsxADlSCSQpOyEDKqWKqUzVKRkAUBVrofU5ufB-G14hQQ7IZJbn6Fof1Xm0s01buBIjrLBZH6K6inZN3dZVXFRZ5zCLfFGtS4xxj1UblbZ1m253Sc5yW3q8-r5D8v44W07n8eL16Xk6WcROSNrGeZZxbbVMLUgAIbKVAK7RJpoLxRwVKeSS2VWSJmIlkeYZ1Rqspo6njgnGh-Sh993Y0uya4sM2B1PbwswnC-PQGuBMSc5gTwN737Mh_2eHvjUfhXdYlrbCuvNGU5EkoCUP5N2_JFPAgnEawNs_4Lbumio0Dm5cJzINfYZk3EOuqb1vMP8JSsEcVzJhJXNcyfQrBcVNrygQ8ZeWSjOh-BfmTYqw</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Schwank, J.R.</creator><creator>Shaneyfelt, M.R.</creator><creator>Baggio, J.</creator><creator>Dodd, P.E.</creator><creator>Felix, J.A.</creator><creator>Ferlet-Cavrois, V.</creator><creator>Paillet, P.</creator><creator>Lambert, D.</creator><creator>Sexton, F.W.</creator><creator>Hash, G.L.</creator><creator>Blackmore, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0003-2150-4315</orcidid></search><sort><creationdate>20051201</creationdate><title>Effects of particle energy on proton-induced single-event latchup</title><author>Schwank, J.R. ; Shaneyfelt, M.R. ; Baggio, J. ; Dodd, P.E. ; Felix, J.A. ; Ferlet-Cavrois, V. ; Paillet, P. ; Lambert, D. ; Sexton, F.W. ; Hash, G.L. ; Blackmore, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-fdd39a957a050044db4039ea693482c1470f52ab6764b5e1fd1990a91c37c2423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Energy exchange</topic><topic>Energy measurement</topic><topic>Energy transfer</topic><topic>Engineering Sciences</topic><topic>Gain</topic><topic>Gain measurement</topic><topic>Hardness</topic><topic>Mathematical analysis</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nuclear power generation</topic><topic>Particle scattering</topic><topic>Plugs</topic><topic>Proton energy</topic><topic>Protons</topic><topic>Recoil</topic><topic>System testing</topic><topic>Temperature distribution</topic><topic>Thresholds</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwank, J.R.</creatorcontrib><creatorcontrib>Shaneyfelt, M.R.</creatorcontrib><creatorcontrib>Baggio, J.</creatorcontrib><creatorcontrib>Dodd, P.E.</creatorcontrib><creatorcontrib>Felix, J.A.</creatorcontrib><creatorcontrib>Ferlet-Cavrois, V.</creatorcontrib><creatorcontrib>Paillet, P.</creatorcontrib><creatorcontrib>Lambert, D.</creatorcontrib><creatorcontrib>Sexton, F.W.</creatorcontrib><creatorcontrib>Hash, G.L.</creatorcontrib><creatorcontrib>Blackmore, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwank, J.R.</au><au>Shaneyfelt, M.R.</au><au>Baggio, J.</au><au>Dodd, P.E.</au><au>Felix, J.A.</au><au>Ferlet-Cavrois, V.</au><au>Paillet, P.</au><au>Lambert, D.</au><au>Sexton, F.W.</au><au>Hash, G.L.</au><au>Blackmore, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of particle energy on proton-induced single-event latchup</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2005-12-01</date><risdate>2005</risdate><volume>52</volume><issue>6</issue><spage>2622</spage><epage>2629</epage><pages>2622-2629</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The effect of proton energy on single-event latchup (SEL) in present-day SRAMs is investigated over a wide range of proton energies and temperature. SRAMs from five different vendors were irradiated at proton energies from 20 to 500 MeV and at temperatures of 25/spl deg/ and 85/spl deg/C. For the SRAMs and radiation conditions examined in this work, proton energy SEL thresholds varied from as low as 20 MeV to as high as 490MeV. To gain insight into the observed effects, the heavy-ion SEL linear energy transfer (LET) thresholds of the SRAMs were measured and compared to high-energy transport calculations of proton interactions with different materials. For some SRAMs that showed proton-induced SEL, the heavy-ion SEL threshold LET was as high as 25MeV-cm/sup 2//mg. Proton interactions with Si cannot generate nuclear recoils with LETs this large. Our nuclear scattering calculations suggest that the nuclear recoils are generated by proton interactions with tungsten. Tungsten plugs are commonly used in most high-density ICs fabricated today, including SRAMs. These results demonstrate that for system applications where latchups cannot be tolerated, SEL hardness assurance testing should be performed at a proton energy at least as high as the highest proton energy present in the system environment. Moreover, the best procedure to ensure that ICs will be latchup free in proton environments may be to use a heavy-ion source with LETs /spl ges/40 MeV-cm/sup 2//mg.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2005.860672</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8701-7283</orcidid><orcidid>https://orcid.org/0000-0003-2150-4315</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2005-12, Vol.52 (6), p.2622-2629 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_913965740 |
source | IEEE Electronic Library (IEL) |
subjects | Energy exchange Energy measurement Energy transfer Engineering Sciences Gain Gain measurement Hardness Mathematical analysis Micro and nanotechnologies Microelectronics Nuclear power generation Particle scattering Plugs Proton energy Protons Recoil System testing Temperature distribution Thresholds Tungsten |
title | Effects of particle energy on proton-induced single-event latchup |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20particle%20energy%20on%20proton-induced%20single-event%20latchup&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Schwank,%20J.R.&rft.date=2005-12-01&rft.volume=52&rft.issue=6&rft.spage=2622&rft.epage=2629&rft.pages=2622-2629&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2005.860672&rft_dat=%3Cproquest_RIE%3E28020327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913965740&rft_id=info:pmid/&rft_ieee_id=1589248&rfr_iscdi=true |