Ultimate RF Performance Potential of Carbon Electronics

Carbon electronics based on carbon nanotube array field-effect transistors (AFETs) and 2-D graphene field-effect transistors (GFETs) have recently attracted significant attention for potential RF applications. Here, we explore the ultimate RF performance potential for these two unique devices using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2011-10, Vol.59 (10), p.2739-2750
Hauptverfasser: Koswatta, S. O., Valdes-Garcia, A., Steiner, M. B., Yu-Ming Lin, Avouris, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2750
container_issue 10
container_start_page 2739
container_title IEEE transactions on microwave theory and techniques
container_volume 59
creator Koswatta, S. O.
Valdes-Garcia, A.
Steiner, M. B.
Yu-Ming Lin
Avouris, P.
description Carbon electronics based on carbon nanotube array field-effect transistors (AFETs) and 2-D graphene field-effect transistors (GFETs) have recently attracted significant attention for potential RF applications. Here, we explore the ultimate RF performance potential for these two unique devices using semiclassical ballistic transport simulations. It is shown that the intrinsic current-gain and power-gain cutoff frequencies ( fT and f MAX ) above 1 THz should be possible in both AFETs and GFETs. Thus, both devices could deliver higher cutoff frequencies than traditional semiconductors such as Si and III-V's. In the case of AFETs, we show that their RF operation is not sensitive to the diameter variation of semiconducting tubes and the presence of metallic tubes in the channel. The ultimate fT and f MAX values in AFETs are observed to be higher than that in GFETs. The optimum device biasing conditions for AFETs require smaller biasing currents, and thus, lower power dissipation compared to GFETs. The degradation in high-frequency performance in the presence of external parasitics is also seen to be lower in AFETs compared to GFETs.
doi_str_mv 10.1109/TMTT.2011.2150241
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_913426357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5783319</ieee_id><sourcerecordid>963854470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3a737d5e841a29a0bfd296dd5a6d23d7f256b1d2b8c0237fcc24ddbcea6f56323</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsXjxtzXc2RymtChWLbM8hm0xgy3ZTk-3Bf--WFg-ehoHnfZl5ELoneEYI1s_1R13PKCZkRonAlJMLNCFCqFJLhS_RBGNSlZpX-Brd5LwdVy5wNUFq0w3tzg5QfC2LNaQQ0872Dop1HKAfWtsVMRRzm5rYF4sO3JBi37p8i66C7TLcnecUbZaLev5Wrj5f3-cvq9IxqYaSWcWUF1BxYqm2uAmeaum9sNJT5lWgQjbE06ZymDIVnKPc-8aBlUFIRtkUPZ169yl-HyAPZtdmB11ne4iHbLRkleBc4ZF8_Edu4yH143FGE8apZEKNEDlBLsWcEwSzT-P76ccQbI4izVGkOYo0Z5Fj5uGUaQHgjxeqYoxo9guV524A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913426357</pqid></control><display><type>article</type><title>Ultimate RF Performance Potential of Carbon Electronics</title><source>IEEE Xplore</source><creator>Koswatta, S. O. ; Valdes-Garcia, A. ; Steiner, M. B. ; Yu-Ming Lin ; Avouris, P.</creator><creatorcontrib>Koswatta, S. O. ; Valdes-Garcia, A. ; Steiner, M. B. ; Yu-Ming Lin ; Avouris, P.</creatorcontrib><description>Carbon electronics based on carbon nanotube array field-effect transistors (AFETs) and 2-D graphene field-effect transistors (GFETs) have recently attracted significant attention for potential RF applications. Here, we explore the ultimate RF performance potential for these two unique devices using semiclassical ballistic transport simulations. It is shown that the intrinsic current-gain and power-gain cutoff frequencies ( fT and f MAX ) above 1 THz should be possible in both AFETs and GFETs. Thus, both devices could deliver higher cutoff frequencies than traditional semiconductors such as Si and III-V's. In the case of AFETs, we show that their RF operation is not sensitive to the diameter variation of semiconducting tubes and the presence of metallic tubes in the channel. The ultimate fT and f MAX values in AFETs are observed to be higher than that in GFETs. The optimum device biasing conditions for AFETs require smaller biasing currents, and thus, lower power dissipation compared to GFETs. The degradation in high-frequency performance in the presence of external parasitics is also seen to be lower in AFETs compared to GFETs.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2011.2150241</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ballistic transport ; Carbon ; Carbon nanotube (CNT) ; Devices ; Electron tubes ; Electronics ; field-effect transistor (FET) ; Graphene ; Logic gates ; Nanotubes ; Performance evaluation ; Quantum capacitance ; Radio frequencies ; Radio frequency ; Semiconductors ; Transistors ; Tubes</subject><ispartof>IEEE transactions on microwave theory and techniques, 2011-10, Vol.59 (10), p.2739-2750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3a737d5e841a29a0bfd296dd5a6d23d7f256b1d2b8c0237fcc24ddbcea6f56323</citedby><cites>FETCH-LOGICAL-c367t-3a737d5e841a29a0bfd296dd5a6d23d7f256b1d2b8c0237fcc24ddbcea6f56323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5783319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5783319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koswatta, S. O.</creatorcontrib><creatorcontrib>Valdes-Garcia, A.</creatorcontrib><creatorcontrib>Steiner, M. B.</creatorcontrib><creatorcontrib>Yu-Ming Lin</creatorcontrib><creatorcontrib>Avouris, P.</creatorcontrib><title>Ultimate RF Performance Potential of Carbon Electronics</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Carbon electronics based on carbon nanotube array field-effect transistors (AFETs) and 2-D graphene field-effect transistors (GFETs) have recently attracted significant attention for potential RF applications. Here, we explore the ultimate RF performance potential for these two unique devices using semiclassical ballistic transport simulations. It is shown that the intrinsic current-gain and power-gain cutoff frequencies ( fT and f MAX ) above 1 THz should be possible in both AFETs and GFETs. Thus, both devices could deliver higher cutoff frequencies than traditional semiconductors such as Si and III-V's. In the case of AFETs, we show that their RF operation is not sensitive to the diameter variation of semiconducting tubes and the presence of metallic tubes in the channel. The ultimate fT and f MAX values in AFETs are observed to be higher than that in GFETs. The optimum device biasing conditions for AFETs require smaller biasing currents, and thus, lower power dissipation compared to GFETs. The degradation in high-frequency performance in the presence of external parasitics is also seen to be lower in AFETs compared to GFETs.</description><subject>Ballistic transport</subject><subject>Carbon</subject><subject>Carbon nanotube (CNT)</subject><subject>Devices</subject><subject>Electron tubes</subject><subject>Electronics</subject><subject>field-effect transistor (FET)</subject><subject>Graphene</subject><subject>Logic gates</subject><subject>Nanotubes</subject><subject>Performance evaluation</subject><subject>Quantum capacitance</subject><subject>Radio frequencies</subject><subject>Radio frequency</subject><subject>Semiconductors</subject><subject>Transistors</subject><subject>Tubes</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwsXjxtzXc2RymtChWLbM8hm0xgy3ZTk-3Bf--WFg-ehoHnfZl5ELoneEYI1s_1R13PKCZkRonAlJMLNCFCqFJLhS_RBGNSlZpX-Brd5LwdVy5wNUFq0w3tzg5QfC2LNaQQ0872Dop1HKAfWtsVMRRzm5rYF4sO3JBi37p8i66C7TLcnecUbZaLev5Wrj5f3-cvq9IxqYaSWcWUF1BxYqm2uAmeaum9sNJT5lWgQjbE06ZymDIVnKPc-8aBlUFIRtkUPZ169yl-HyAPZtdmB11ne4iHbLRkleBc4ZF8_Edu4yH143FGE8apZEKNEDlBLsWcEwSzT-P76ccQbI4izVGkOYo0Z5Fj5uGUaQHgjxeqYoxo9guV524A</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Koswatta, S. O.</creator><creator>Valdes-Garcia, A.</creator><creator>Steiner, M. B.</creator><creator>Yu-Ming Lin</creator><creator>Avouris, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111001</creationdate><title>Ultimate RF Performance Potential of Carbon Electronics</title><author>Koswatta, S. O. ; Valdes-Garcia, A. ; Steiner, M. B. ; Yu-Ming Lin ; Avouris, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3a737d5e841a29a0bfd296dd5a6d23d7f256b1d2b8c0237fcc24ddbcea6f56323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ballistic transport</topic><topic>Carbon</topic><topic>Carbon nanotube (CNT)</topic><topic>Devices</topic><topic>Electron tubes</topic><topic>Electronics</topic><topic>field-effect transistor (FET)</topic><topic>Graphene</topic><topic>Logic gates</topic><topic>Nanotubes</topic><topic>Performance evaluation</topic><topic>Quantum capacitance</topic><topic>Radio frequencies</topic><topic>Radio frequency</topic><topic>Semiconductors</topic><topic>Transistors</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koswatta, S. O.</creatorcontrib><creatorcontrib>Valdes-Garcia, A.</creatorcontrib><creatorcontrib>Steiner, M. B.</creatorcontrib><creatorcontrib>Yu-Ming Lin</creatorcontrib><creatorcontrib>Avouris, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koswatta, S. O.</au><au>Valdes-Garcia, A.</au><au>Steiner, M. B.</au><au>Yu-Ming Lin</au><au>Avouris, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultimate RF Performance Potential of Carbon Electronics</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>59</volume><issue>10</issue><spage>2739</spage><epage>2750</epage><pages>2739-2750</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Carbon electronics based on carbon nanotube array field-effect transistors (AFETs) and 2-D graphene field-effect transistors (GFETs) have recently attracted significant attention for potential RF applications. Here, we explore the ultimate RF performance potential for these two unique devices using semiclassical ballistic transport simulations. It is shown that the intrinsic current-gain and power-gain cutoff frequencies ( fT and f MAX ) above 1 THz should be possible in both AFETs and GFETs. Thus, both devices could deliver higher cutoff frequencies than traditional semiconductors such as Si and III-V's. In the case of AFETs, we show that their RF operation is not sensitive to the diameter variation of semiconducting tubes and the presence of metallic tubes in the channel. The ultimate fT and f MAX values in AFETs are observed to be higher than that in GFETs. The optimum device biasing conditions for AFETs require smaller biasing currents, and thus, lower power dissipation compared to GFETs. The degradation in high-frequency performance in the presence of external parasitics is also seen to be lower in AFETs compared to GFETs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2011.2150241</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2011-10, Vol.59 (10), p.2739-2750
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_journals_913426357
source IEEE Xplore
subjects Ballistic transport
Carbon
Carbon nanotube (CNT)
Devices
Electron tubes
Electronics
field-effect transistor (FET)
Graphene
Logic gates
Nanotubes
Performance evaluation
Quantum capacitance
Radio frequencies
Radio frequency
Semiconductors
Transistors
Tubes
title Ultimate RF Performance Potential of Carbon Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T18%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultimate%20RF%20Performance%20Potential%20of%20Carbon%20Electronics&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Koswatta,%20S.%20O.&rft.date=2011-10-01&rft.volume=59&rft.issue=10&rft.spage=2739&rft.epage=2750&rft.pages=2739-2750&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2011.2150241&rft_dat=%3Cproquest_RIE%3E963854470%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913426357&rft_id=info:pmid/&rft_ieee_id=5783319&rfr_iscdi=true