Implications of extinction due to meteoritic smoke in the upper stratosphere

Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2011-12, Vol.38 (24), p.n/a
Hauptverfasser: Neely III, Ryan R., English, Jason M., Toon, Owen B., Solomon, Susan, Mills, Michael, Thayer, Jeffery P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Geophysical research letters
container_volume 38
creator Neely III, Ryan R.
English, Jason M.
Toon, Owen B.
Solomon, Susan
Mills, Michael
Thayer, Jeffery P.
description Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere. Key Points Meteoritic smoke dominates aerosol extinction in the upper stratosphere Meteoritic smoke influences aerosol properties throughout the stratosphere Extinction retrievals of the stratosphere should consider meteoritic smoke
doi_str_mv 10.1029/2011GL049865
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_913199562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550910471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</originalsourceid><addsrcrecordid>eNp9kNFK5DAUhoO44DjrnQ8QhL3bridN2jSXy6CjWFxYFC9Dmp5inJmmJhl03n4jM8heeZUT-L7_JD8h5wx-MSjVZQmMLVsQqqmrIzJjSoiiAZDHZAag8lzK-oScxvgCABw4m5H2djOtnTXJ-TFSP1B8T260H1fab5EmTzeY0AeXnKVx41dI3UjTM9LtNGGgMQWTfJyeMeB38m0w64hnh3NOHq-vHhY3Rftnebv43RZWMAbF0DdcWAk9MlHJTubXgmqwF31v0eafSGsV47KWqgPoVccMdB3UjJcdrzrG5-RinzsF_7rFmPSL34Yxr9TZY0pVdZmhn3vIBh9jwEFPwW1M2GkG-qMu_X9dGf9xyDTRmvUQzGhd_HTKJhfIBM9cuefe3Bp3X2bq5d-2bKSALBV7ycWE75-SCStdSy4r_XS_1LK5u1GLZqGv-T_tTobH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913199562</pqid></control><display><type>article</type><title>Implications of extinction due to meteoritic smoke in the upper stratosphere</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Neely III, Ryan R. ; English, Jason M. ; Toon, Owen B. ; Solomon, Susan ; Mills, Michael ; Thayer, Jeffery P.</creator><creatorcontrib>Neely III, Ryan R. ; English, Jason M. ; Toon, Owen B. ; Solomon, Susan ; Mills, Michael ; Thayer, Jeffery P.</creatorcontrib><description>Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere. Key Points Meteoritic smoke dominates aerosol extinction in the upper stratosphere Meteoritic smoke influences aerosol properties throughout the stratosphere Extinction retrievals of the stratosphere should consider meteoritic smoke</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2011GL049865</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosols ; Atmospheric aerosols ; Atmospheric sciences ; Climate models ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Lidar ; mesosphere ; meteoritic smoke ; Radiation ; Remote sensing ; Scientific apparatus &amp; instruments ; Stratosphere ; Sulfates ; Tropical environments</subject><ispartof>Geophysical research letters, 2011-12, Vol.38 (24), p.n/a</ispartof><rights>2011 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</citedby><cites>FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011GL049865$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011GL049865$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28094143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neely III, Ryan R.</creatorcontrib><creatorcontrib>English, Jason M.</creatorcontrib><creatorcontrib>Toon, Owen B.</creatorcontrib><creatorcontrib>Solomon, Susan</creatorcontrib><creatorcontrib>Mills, Michael</creatorcontrib><creatorcontrib>Thayer, Jeffery P.</creatorcontrib><title>Implications of extinction due to meteoritic smoke in the upper stratosphere</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere. Key Points Meteoritic smoke dominates aerosol extinction in the upper stratosphere Meteoritic smoke influences aerosol properties throughout the stratosphere Extinction retrievals of the stratosphere should consider meteoritic smoke</description><subject>aerosol</subject><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>Climate models</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Lidar</subject><subject>mesosphere</subject><subject>meteoritic smoke</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Stratosphere</subject><subject>Sulfates</subject><subject>Tropical environments</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kNFK5DAUhoO44DjrnQ8QhL3bridN2jSXy6CjWFxYFC9Dmp5inJmmJhl03n4jM8heeZUT-L7_JD8h5wx-MSjVZQmMLVsQqqmrIzJjSoiiAZDHZAag8lzK-oScxvgCABw4m5H2djOtnTXJ-TFSP1B8T260H1fab5EmTzeY0AeXnKVx41dI3UjTM9LtNGGgMQWTfJyeMeB38m0w64hnh3NOHq-vHhY3Rftnebv43RZWMAbF0DdcWAk9MlHJTubXgmqwF31v0eafSGsV47KWqgPoVccMdB3UjJcdrzrG5-RinzsF_7rFmPSL34Yxr9TZY0pVdZmhn3vIBh9jwEFPwW1M2GkG-qMu_X9dGf9xyDTRmvUQzGhd_HTKJhfIBM9cuefe3Bp3X2bq5d-2bKSALBV7ycWE75-SCStdSy4r_XS_1LK5u1GLZqGv-T_tTobH</recordid><startdate>20111228</startdate><enddate>20111228</enddate><creator>Neely III, Ryan R.</creator><creator>English, Jason M.</creator><creator>Toon, Owen B.</creator><creator>Solomon, Susan</creator><creator>Mills, Michael</creator><creator>Thayer, Jeffery P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20111228</creationdate><title>Implications of extinction due to meteoritic smoke in the upper stratosphere</title><author>Neely III, Ryan R. ; English, Jason M. ; Toon, Owen B. ; Solomon, Susan ; Mills, Michael ; Thayer, Jeffery P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>Climate models</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Lidar</topic><topic>mesosphere</topic><topic>meteoritic smoke</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Stratosphere</topic><topic>Sulfates</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neely III, Ryan R.</creatorcontrib><creatorcontrib>English, Jason M.</creatorcontrib><creatorcontrib>Toon, Owen B.</creatorcontrib><creatorcontrib>Solomon, Susan</creatorcontrib><creatorcontrib>Mills, Michael</creatorcontrib><creatorcontrib>Thayer, Jeffery P.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neely III, Ryan R.</au><au>English, Jason M.</au><au>Toon, Owen B.</au><au>Solomon, Susan</au><au>Mills, Michael</au><au>Thayer, Jeffery P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of extinction due to meteoritic smoke in the upper stratosphere</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2011-12-28</date><risdate>2011</risdate><volume>38</volume><issue>24</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere. Key Points Meteoritic smoke dominates aerosol extinction in the upper stratosphere Meteoritic smoke influences aerosol properties throughout the stratosphere Extinction retrievals of the stratosphere should consider meteoritic smoke</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011GL049865</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2011-12, Vol.38 (24), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_913199562
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects aerosol
Aerosols
Atmospheric aerosols
Atmospheric sciences
Climate models
Earth sciences
Earth, ocean, space
Exact sciences and technology
Lidar
mesosphere
meteoritic smoke
Radiation
Remote sensing
Scientific apparatus & instruments
Stratosphere
Sulfates
Tropical environments
title Implications of extinction due to meteoritic smoke in the upper stratosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20extinction%20due%20to%20meteoritic%20smoke%20in%20the%20upper%20stratosphere&rft.jtitle=Geophysical%20research%20letters&rft.au=Neely%20III,%20Ryan%20R.&rft.date=2011-12-28&rft.volume=38&rft.issue=24&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2011GL049865&rft_dat=%3Cproquest_cross%3E2550910471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913199562&rft_id=info:pmid/&rfr_iscdi=true