Implications of extinction due to meteoritic smoke in the upper stratosphere
Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2011-12, Vol.38 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 38 |
creator | Neely III, Ryan R. English, Jason M. Toon, Owen B. Solomon, Susan Mills, Michael Thayer, Jeffery P. |
description | Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.
Key Points
Meteoritic smoke dominates aerosol extinction in the upper stratosphere
Meteoritic smoke influences aerosol properties throughout the stratosphere
Extinction retrievals of the stratosphere should consider meteoritic smoke |
doi_str_mv | 10.1029/2011GL049865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_913199562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550910471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</originalsourceid><addsrcrecordid>eNp9kNFK5DAUhoO44DjrnQ8QhL3bridN2jSXy6CjWFxYFC9Dmp5inJmmJhl03n4jM8heeZUT-L7_JD8h5wx-MSjVZQmMLVsQqqmrIzJjSoiiAZDHZAag8lzK-oScxvgCABw4m5H2djOtnTXJ-TFSP1B8T260H1fab5EmTzeY0AeXnKVx41dI3UjTM9LtNGGgMQWTfJyeMeB38m0w64hnh3NOHq-vHhY3Rftnebv43RZWMAbF0DdcWAk9MlHJTubXgmqwF31v0eafSGsV47KWqgPoVccMdB3UjJcdrzrG5-RinzsF_7rFmPSL34Yxr9TZY0pVdZmhn3vIBh9jwEFPwW1M2GkG-qMu_X9dGf9xyDTRmvUQzGhd_HTKJhfIBM9cuefe3Bp3X2bq5d-2bKSALBV7ycWE75-SCStdSy4r_XS_1LK5u1GLZqGv-T_tTobH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913199562</pqid></control><display><type>article</type><title>Implications of extinction due to meteoritic smoke in the upper stratosphere</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Neely III, Ryan R. ; English, Jason M. ; Toon, Owen B. ; Solomon, Susan ; Mills, Michael ; Thayer, Jeffery P.</creator><creatorcontrib>Neely III, Ryan R. ; English, Jason M. ; Toon, Owen B. ; Solomon, Susan ; Mills, Michael ; Thayer, Jeffery P.</creatorcontrib><description>Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.
Key Points
Meteoritic smoke dominates aerosol extinction in the upper stratosphere
Meteoritic smoke influences aerosol properties throughout the stratosphere
Extinction retrievals of the stratosphere should consider meteoritic smoke</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2011GL049865</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosols ; Atmospheric aerosols ; Atmospheric sciences ; Climate models ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Lidar ; mesosphere ; meteoritic smoke ; Radiation ; Remote sensing ; Scientific apparatus & instruments ; Stratosphere ; Sulfates ; Tropical environments</subject><ispartof>Geophysical research letters, 2011-12, Vol.38 (24), p.n/a</ispartof><rights>2011 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</citedby><cites>FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011GL049865$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011GL049865$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28094143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neely III, Ryan R.</creatorcontrib><creatorcontrib>English, Jason M.</creatorcontrib><creatorcontrib>Toon, Owen B.</creatorcontrib><creatorcontrib>Solomon, Susan</creatorcontrib><creatorcontrib>Mills, Michael</creatorcontrib><creatorcontrib>Thayer, Jeffery P.</creatorcontrib><title>Implications of extinction due to meteoritic smoke in the upper stratosphere</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.
Key Points
Meteoritic smoke dominates aerosol extinction in the upper stratosphere
Meteoritic smoke influences aerosol properties throughout the stratosphere
Extinction retrievals of the stratosphere should consider meteoritic smoke</description><subject>aerosol</subject><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>Climate models</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Lidar</subject><subject>mesosphere</subject><subject>meteoritic smoke</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Scientific apparatus & instruments</subject><subject>Stratosphere</subject><subject>Sulfates</subject><subject>Tropical environments</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kNFK5DAUhoO44DjrnQ8QhL3bridN2jSXy6CjWFxYFC9Dmp5inJmmJhl03n4jM8heeZUT-L7_JD8h5wx-MSjVZQmMLVsQqqmrIzJjSoiiAZDHZAag8lzK-oScxvgCABw4m5H2djOtnTXJ-TFSP1B8T260H1fab5EmTzeY0AeXnKVx41dI3UjTM9LtNGGgMQWTfJyeMeB38m0w64hnh3NOHq-vHhY3Rftnebv43RZWMAbF0DdcWAk9MlHJTubXgmqwF31v0eafSGsV47KWqgPoVccMdB3UjJcdrzrG5-RinzsF_7rFmPSL34Yxr9TZY0pVdZmhn3vIBh9jwEFPwW1M2GkG-qMu_X9dGf9xyDTRmvUQzGhd_HTKJhfIBM9cuefe3Bp3X2bq5d-2bKSALBV7ycWE75-SCStdSy4r_XS_1LK5u1GLZqGv-T_tTobH</recordid><startdate>20111228</startdate><enddate>20111228</enddate><creator>Neely III, Ryan R.</creator><creator>English, Jason M.</creator><creator>Toon, Owen B.</creator><creator>Solomon, Susan</creator><creator>Mills, Michael</creator><creator>Thayer, Jeffery P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20111228</creationdate><title>Implications of extinction due to meteoritic smoke in the upper stratosphere</title><author>Neely III, Ryan R. ; English, Jason M. ; Toon, Owen B. ; Solomon, Susan ; Mills, Michael ; Thayer, Jeffery P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4110-fd834c70de1457b7865098ed4ddcec1027cc9137679b00d9b1a0bb06132b35b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>Climate models</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Lidar</topic><topic>mesosphere</topic><topic>meteoritic smoke</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Scientific apparatus & instruments</topic><topic>Stratosphere</topic><topic>Sulfates</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neely III, Ryan R.</creatorcontrib><creatorcontrib>English, Jason M.</creatorcontrib><creatorcontrib>Toon, Owen B.</creatorcontrib><creatorcontrib>Solomon, Susan</creatorcontrib><creatorcontrib>Mills, Michael</creatorcontrib><creatorcontrib>Thayer, Jeffery P.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neely III, Ryan R.</au><au>English, Jason M.</au><au>Toon, Owen B.</au><au>Solomon, Susan</au><au>Mills, Michael</au><au>Thayer, Jeffery P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implications of extinction due to meteoritic smoke in the upper stratosphere</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2011-12-28</date><risdate>2011</risdate><volume>38</volume><issue>24</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Recent optical observations of aerosols in the upper stratosphere and mesosphere show significant amounts of extinction at altitudes above about 40 km where the stratospheric sulfate aerosol layer ends. Recent modeling of this region reveals that meteoritic smoke settling from the mesosphere and its interaction with the upper part of the sulfate aerosol layer is the origin of the observed extinction. Extinction in this region has major implications for the interpretation and analysis of several kinds of aerosol data (satellite and lidar). We compare observations from the SAGE II satellite and from NOAA's lidar located at Mauna Loa, Hawaii to extinction profiles derived from the Whole Atmosphere Community Climate Model (WACCM) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA). Our results show that a major source of extinction exists in the region above about 30 km that must be addressed by all remote sensing instruments that have traditionally used the stratosphere above about 30 km as an aerosol free region to estimate the molecular component of their total extinction. It is also shown that meteoritic smoke not only contributes to but also becomes the dominant source of aerosol extinction above 35 km and poleward of 30 degrees in latitude, as well as above 40 km in the tropics. After addressing the concerns described here, current and past observations of this region could be reanalyzed to further our understanding of meteoritic dust in the upper stratosphere.
Key Points
Meteoritic smoke dominates aerosol extinction in the upper stratosphere
Meteoritic smoke influences aerosol properties throughout the stratosphere
Extinction retrievals of the stratosphere should consider meteoritic smoke</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011GL049865</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2011-12, Vol.38 (24), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_913199562 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals |
subjects | aerosol Aerosols Atmospheric aerosols Atmospheric sciences Climate models Earth sciences Earth, ocean, space Exact sciences and technology Lidar mesosphere meteoritic smoke Radiation Remote sensing Scientific apparatus & instruments Stratosphere Sulfates Tropical environments |
title | Implications of extinction due to meteoritic smoke in the upper stratosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implications%20of%20extinction%20due%20to%20meteoritic%20smoke%20in%20the%20upper%20stratosphere&rft.jtitle=Geophysical%20research%20letters&rft.au=Neely%20III,%20Ryan%20R.&rft.date=2011-12-28&rft.volume=38&rft.issue=24&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2011GL049865&rft_dat=%3Cproquest_cross%3E2550910471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913199562&rft_id=info:pmid/&rfr_iscdi=true |