Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC
The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control la...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2012-01, Vol.57 (1), p.185-191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | IEEE transactions on automatic control |
container_volume | 57 |
creator | Picasso, B. Desiderio, D. Scattolini, R. |
description | The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach. |
doi_str_mv | 10.1109/TAC.2011.2163363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912793675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5967892</ieee_id><sourcerecordid>2548229421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</originalsourceid><addsrcrecordid>eNpdkMtLAzEQxoMoWKt3wUsQBC9b8072WOoT6gNb8bhk0wQj201N0kP_e1NaPHgaZuY3H998AJxjNMIY1Tfz8WREEMYjggWlgh6AAeZcVYQTeggGCGFV1USJY3CS0ndpBWN4AObvoV2nDGdZt77zeQPHve42yScYHHwJfed7qyO89clEm20190sLZ5uU7TLBT5-_4Hi16rzR2Yce5gCf3yan4MjpLtmzfR2Cj_u7-eSxmr4-PE3G08pQTnNliOOIMI5FK5WWwknWEoetEY62arFQ0knaasbKkLZiIQw3yPFFjRgzGDE6BNc73VUMP2ubcrMsNm3X6d6GdWowwkiVp2te0Mt_6HdYx_JqampMZE2F3EJoB5kYUorWNavolzpuilKzTbkpKTfblJt9yuXkaq-rk9Gdi7o3Pv3dEc6UVEoU7mLHeWvt35rXQhaD9BeIkYQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912793675</pqid></control><display><type>article</type><title>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</title><source>IEEE Electronic Library (IEL)</source><creator>Picasso, B. ; Desiderio, D. ; Scattolini, R.</creator><creatorcontrib>Picasso, B. ; Desiderio, D. ; Scattolini, R.</creatorcontrib><description>The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2163363</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Additives ; Applied sciences ; Asymptotic properties ; Automatic control ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Discontinuous systems ; Equations ; Exact sciences and technology ; input-to-state stabilization ; Law ; Lyapunov methods ; Mathematical model ; Mathematical models ; model predictive control (MPC) ; Nonlinearity ; Optimal control ; Robust stability ; Robustness ; Stability ; Stability analysis ; Synthesis</subject><ispartof>IEEE transactions on automatic control, 2012-01, Vol.57 (1), p.185-191</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</citedby><cites>FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5967892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5967892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25487886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Picasso, B.</creatorcontrib><creatorcontrib>Desiderio, D.</creatorcontrib><creatorcontrib>Scattolini, R.</creatorcontrib><title>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.</description><subject>Adaptative systems</subject><subject>Additives</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Discontinuous systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>input-to-state stabilization</subject><subject>Law</subject><subject>Lyapunov methods</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>model predictive control (MPC)</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Synthesis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQxoMoWKt3wUsQBC9b8072WOoT6gNb8bhk0wQj201N0kP_e1NaPHgaZuY3H998AJxjNMIY1Tfz8WREEMYjggWlgh6AAeZcVYQTeggGCGFV1USJY3CS0ndpBWN4AObvoV2nDGdZt77zeQPHve42yScYHHwJfed7qyO89clEm20190sLZ5uU7TLBT5-_4Hi16rzR2Yce5gCf3yan4MjpLtmzfR2Cj_u7-eSxmr4-PE3G08pQTnNliOOIMI5FK5WWwknWEoetEY62arFQ0knaasbKkLZiIQw3yPFFjRgzGDE6BNc73VUMP2ubcrMsNm3X6d6GdWowwkiVp2te0Mt_6HdYx_JqampMZE2F3EJoB5kYUorWNavolzpuilKzTbkpKTfblJt9yuXkaq-rk9Gdi7o3Pv3dEc6UVEoU7mLHeWvt35rXQhaD9BeIkYQY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Picasso, B.</creator><creator>Desiderio, D.</creator><creator>Scattolini, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201201</creationdate><title>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</title><author>Picasso, B. ; Desiderio, D. ; Scattolini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptative systems</topic><topic>Additives</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Discontinuous systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>input-to-state stabilization</topic><topic>Law</topic><topic>Lyapunov methods</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>model predictive control (MPC)</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picasso, B.</creatorcontrib><creatorcontrib>Desiderio, D.</creatorcontrib><creatorcontrib>Scattolini, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Picasso, B.</au><au>Desiderio, D.</au><au>Scattolini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-01</date><risdate>2012</risdate><volume>57</volume><issue>1</issue><spage>185</spage><epage>191</epage><pages>185-191</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2163363</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2012-01, Vol.57 (1), p.185-191 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_912793675 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptative systems Additives Applied sciences Asymptotic properties Automatic control Computer science control theory systems Control system analysis Control theory. Systems Discontinuous systems Equations Exact sciences and technology input-to-state stabilization Law Lyapunov methods Mathematical model Mathematical models model predictive control (MPC) Nonlinearity Optimal control Robust stability Robustness Stability Stability analysis Synthesis |
title | Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Stability%20Analysis%20of%20Nonlinear%20Discrete-Time%20Systems%20With%20Application%20to%20MPC&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Picasso,%20B.&rft.date=2012-01&rft.volume=57&rft.issue=1&rft.spage=185&rft.epage=191&rft.pages=185-191&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2163363&rft_dat=%3Cproquest_RIE%3E2548229421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912793675&rft_id=info:pmid/&rft_ieee_id=5967892&rfr_iscdi=true |