Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC

The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2012-01, Vol.57 (1), p.185-191
Hauptverfasser: Picasso, B., Desiderio, D., Scattolini, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 1
container_start_page 185
container_title IEEE transactions on automatic control
container_volume 57
creator Picasso, B.
Desiderio, D.
Scattolini, R.
description The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.
doi_str_mv 10.1109/TAC.2011.2163363
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912793675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5967892</ieee_id><sourcerecordid>2548229421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</originalsourceid><addsrcrecordid>eNpdkMtLAzEQxoMoWKt3wUsQBC9b8072WOoT6gNb8bhk0wQj201N0kP_e1NaPHgaZuY3H998AJxjNMIY1Tfz8WREEMYjggWlgh6AAeZcVYQTeggGCGFV1USJY3CS0ndpBWN4AObvoV2nDGdZt77zeQPHve42yScYHHwJfed7qyO89clEm20190sLZ5uU7TLBT5-_4Hi16rzR2Yce5gCf3yan4MjpLtmzfR2Cj_u7-eSxmr4-PE3G08pQTnNliOOIMI5FK5WWwknWEoetEY62arFQ0knaasbKkLZiIQw3yPFFjRgzGDE6BNc73VUMP2ubcrMsNm3X6d6GdWowwkiVp2te0Mt_6HdYx_JqampMZE2F3EJoB5kYUorWNavolzpuilKzTbkpKTfblJt9yuXkaq-rk9Gdi7o3Pv3dEc6UVEoU7mLHeWvt35rXQhaD9BeIkYQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912793675</pqid></control><display><type>article</type><title>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</title><source>IEEE Electronic Library (IEL)</source><creator>Picasso, B. ; Desiderio, D. ; Scattolini, R.</creator><creatorcontrib>Picasso, B. ; Desiderio, D. ; Scattolini, R.</creatorcontrib><description>The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2163363</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Additives ; Applied sciences ; Asymptotic properties ; Automatic control ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Discontinuous systems ; Equations ; Exact sciences and technology ; input-to-state stabilization ; Law ; Lyapunov methods ; Mathematical model ; Mathematical models ; model predictive control (MPC) ; Nonlinearity ; Optimal control ; Robust stability ; Robustness ; Stability ; Stability analysis ; Synthesis</subject><ispartof>IEEE transactions on automatic control, 2012-01, Vol.57 (1), p.185-191</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</citedby><cites>FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5967892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5967892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25487886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Picasso, B.</creatorcontrib><creatorcontrib>Desiderio, D.</creatorcontrib><creatorcontrib>Scattolini, R.</creatorcontrib><title>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.</description><subject>Adaptative systems</subject><subject>Additives</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Discontinuous systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>input-to-state stabilization</subject><subject>Law</subject><subject>Lyapunov methods</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>model predictive control (MPC)</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Synthesis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQxoMoWKt3wUsQBC9b8072WOoT6gNb8bhk0wQj201N0kP_e1NaPHgaZuY3H998AJxjNMIY1Tfz8WREEMYjggWlgh6AAeZcVYQTeggGCGFV1USJY3CS0ndpBWN4AObvoV2nDGdZt77zeQPHve42yScYHHwJfed7qyO89clEm20190sLZ5uU7TLBT5-_4Hi16rzR2Yce5gCf3yan4MjpLtmzfR2Cj_u7-eSxmr4-PE3G08pQTnNliOOIMI5FK5WWwknWEoetEY62arFQ0knaasbKkLZiIQw3yPFFjRgzGDE6BNc73VUMP2ubcrMsNm3X6d6GdWowwkiVp2te0Mt_6HdYx_JqampMZE2F3EJoB5kYUorWNavolzpuilKzTbkpKTfblJt9yuXkaq-rk9Gdi7o3Pv3dEc6UVEoU7mLHeWvt35rXQhaD9BeIkYQY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Picasso, B.</creator><creator>Desiderio, D.</creator><creator>Scattolini, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201201</creationdate><title>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</title><author>Picasso, B. ; Desiderio, D. ; Scattolini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c2f5024516b78a76f74b2f1ec6f3b8dd87f73ba442f13b6d6c5c0f5d9044c1043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptative systems</topic><topic>Additives</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Discontinuous systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>input-to-state stabilization</topic><topic>Law</topic><topic>Lyapunov methods</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>model predictive control (MPC)</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picasso, B.</creatorcontrib><creatorcontrib>Desiderio, D.</creatorcontrib><creatorcontrib>Scattolini, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Picasso, B.</au><au>Desiderio, D.</au><au>Scattolini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2012-01</date><risdate>2012</risdate><volume>57</volume><issue>1</issue><spage>185</spage><epage>191</epage><pages>185-191</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The regional Input-to-State Stability of nonlinear, possibly discontinuous, discrete-time systems is studied under the assumption that the equilibrium of the corresponding nominal model is asymptotically stable. The obtained results are used for the synthesis of a nominal Model Predictive Control law ensuring inherent robustness. A numerical example is reported that witnesses the effectiveness of the approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2163363</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2012-01, Vol.57 (1), p.185-191
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_912793675
source IEEE Electronic Library (IEL)
subjects Adaptative systems
Additives
Applied sciences
Asymptotic properties
Automatic control
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Discontinuous systems
Equations
Exact sciences and technology
input-to-state stabilization
Law
Lyapunov methods
Mathematical model
Mathematical models
model predictive control (MPC)
Nonlinearity
Optimal control
Robust stability
Robustness
Stability
Stability analysis
Synthesis
title Robust Stability Analysis of Nonlinear Discrete-Time Systems With Application to MPC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Stability%20Analysis%20of%20Nonlinear%20Discrete-Time%20Systems%20With%20Application%20to%20MPC&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Picasso,%20B.&rft.date=2012-01&rft.volume=57&rft.issue=1&rft.spage=185&rft.epage=191&rft.pages=185-191&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2163363&rft_dat=%3Cproquest_RIE%3E2548229421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912793675&rft_id=info:pmid/&rft_ieee_id=5967892&rfr_iscdi=true