Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors
The effect of O 2 flow rate (OFR) during channel deposition is investigated on the electrical instability of the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under positive gate bias stresses. From the transfer curves measured before and after bias stresses, we can obser...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2012-01, Vol.33 (1), p.62-64 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | IEEE electron device letters |
container_volume | 33 |
creator | Kim, Sungchul Jeon, Yong Woo Kim, Yongsik Kong, Dongsik Jung, Hyun Kwang Bae, Min-Kyung Lee, Je-Hun Ahn, Byung Du Park, Sei Yong Park, Jun-Hyun Park, Jaewoo Kwon, Hyuck-In Kim, Dong Myong Kim, Dae Hwan |
description | The effect of O 2 flow rate (OFR) during channel deposition is investigated on the electrical instability of the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under positive gate bias stresses. From the transfer curves measured before and after bias stresses, we can observe that the high OFR degrades the electrical stability and causes the large threshold voltage shift (ΔV T ) in a-IGZO TFTs. To elucidate the origin of the observed phenomenon, we extract and compare the subgap density of states (DOS) in devices with various OFRs. The extracted DOS shows that the subgap states become higher with the increase of OFR in a wide range of bandgap, and the enhanced electron trapping due to the increased number of trap states is considered as the cause of larger ΔV T in higher OFR devices. |
doi_str_mv | 10.1109/LED.2011.2173153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912416387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6087997</ieee_id><sourcerecordid>2545851321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-831ff7951db9b03b9363f5a3c3f14d8a56dd2b9ae8f64e6e60ef1c158bea3e4a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhlcIJELhjsTFQkLissGz_lj7WNKmjRQpiKYXLivv7pi42ngX2wFy5ZfXVaIeOM1hnvfRaN6ieA90DkD1l_X11byiAPMKagaCvShmIIQqqZDsZTGjNYeSAZWvizcxPlAKnNd8Vvxb7SfTJTJasvl7_ImeLIfxD_luEpLRk7RDsvIxmdYNLh3Jve8xkG9jdMn9RvLVmUjuUsAYMRLnydWivJsOKWHAnlzuxzDtxkPMihvzw2_Idud8uXTDnmyD8dHFNIb4tnhlzRDx3XleFPfL6-3itlxvblaLy3XZcdCpVAysrbWAvtUtZa1mkllhWMcs8F4ZIfu-arVBZSVHiZKihQ6EatEw5IZdFJ9P3imMvw4YU7N3scNhMB7zkQ1QoEpXSlYZ_fgf-jAegs_XNRoqDpKpOkP0BHVhjDGgbabg9iYcs6l56qTJnTRPnTTnTnLk09lrYmcGm5_QuficqwRXStQycx9OnEPE57Wkqta6Zo-xCpVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912416387</pqid></control><display><type>article</type><title>Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Sungchul ; Jeon, Yong Woo ; Kim, Yongsik ; Kong, Dongsik ; Jung, Hyun Kwang ; Bae, Min-Kyung ; Lee, Je-Hun ; Ahn, Byung Du ; Park, Sei Yong ; Park, Jun-Hyun ; Park, Jaewoo ; Kwon, Hyuck-In ; Kim, Dong Myong ; Kim, Dae Hwan</creator><creatorcontrib>Kim, Sungchul ; Jeon, Yong Woo ; Kim, Yongsik ; Kong, Dongsik ; Jung, Hyun Kwang ; Bae, Min-Kyung ; Lee, Je-Hun ; Ahn, Byung Du ; Park, Sei Yong ; Park, Jun-Hyun ; Park, Jaewoo ; Kwon, Hyuck-In ; Kim, Dong Myong ; Kim, Dae Hwan</creatorcontrib><description>The effect of O 2 flow rate (OFR) during channel deposition is investigated on the electrical instability of the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under positive gate bias stresses. From the transfer curves measured before and after bias stresses, we can observe that the high OFR degrades the electrical stability and causes the large threshold voltage shift (ΔV T ) in a-IGZO TFTs. To elucidate the origin of the observed phenomenon, we extract and compare the subgap density of states (DOS) in devices with various OFRs. The extracted DOS shows that the subgap states become higher with the increase of OFR in a wide range of bandgap, and the enhanced electron trapping due to the increased number of trap states is considered as the cause of larger ΔV T in higher OFR devices.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2011.2173153</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) ; Applied sciences ; Bias ; Charge carrier processes ; charge trapping ; Density of states ; Devices ; electrical stability ; Electronics ; Exact sciences and technology ; Flow rate ; hbox{O}_{2} flow rate (OFR) ; Instability ; Logic gates ; Mathematical model ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stability ; Stress ; Stresses ; subgap density of states (DOS) ; Thin film transistors ; Thin films ; Threshold voltage ; Transistors</subject><ispartof>IEEE electron device letters, 2012-01, Vol.33 (1), p.62-64</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-831ff7951db9b03b9363f5a3c3f14d8a56dd2b9ae8f64e6e60ef1c158bea3e4a3</citedby><cites>FETCH-LOGICAL-c419t-831ff7951db9b03b9363f5a3c3f14d8a56dd2b9ae8f64e6e60ef1c158bea3e4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6087997$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6087997$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25488576$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sungchul</creatorcontrib><creatorcontrib>Jeon, Yong Woo</creatorcontrib><creatorcontrib>Kim, Yongsik</creatorcontrib><creatorcontrib>Kong, Dongsik</creatorcontrib><creatorcontrib>Jung, Hyun Kwang</creatorcontrib><creatorcontrib>Bae, Min-Kyung</creatorcontrib><creatorcontrib>Lee, Je-Hun</creatorcontrib><creatorcontrib>Ahn, Byung Du</creatorcontrib><creatorcontrib>Park, Sei Yong</creatorcontrib><creatorcontrib>Park, Jun-Hyun</creatorcontrib><creatorcontrib>Park, Jaewoo</creatorcontrib><creatorcontrib>Kwon, Hyuck-In</creatorcontrib><creatorcontrib>Kim, Dong Myong</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><title>Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>The effect of O 2 flow rate (OFR) during channel deposition is investigated on the electrical instability of the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under positive gate bias stresses. From the transfer curves measured before and after bias stresses, we can observe that the high OFR degrades the electrical stability and causes the large threshold voltage shift (ΔV T ) in a-IGZO TFTs. To elucidate the origin of the observed phenomenon, we extract and compare the subgap density of states (DOS) in devices with various OFRs. The extracted DOS shows that the subgap states become higher with the increase of OFR in a wide range of bandgap, and the enhanced electron trapping due to the increased number of trap states is considered as the cause of larger ΔV T in higher OFR devices.</description><subject>Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs)</subject><subject>Applied sciences</subject><subject>Bias</subject><subject>Charge carrier processes</subject><subject>charge trapping</subject><subject>Density of states</subject><subject>Devices</subject><subject>electrical stability</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>hbox{O}_{2} flow rate (OFR)</subject><subject>Instability</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stability</subject><subject>Stress</subject><subject>Stresses</subject><subject>subgap density of states (DOS)</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhlcIJELhjsTFQkLissGz_lj7WNKmjRQpiKYXLivv7pi42ngX2wFy5ZfXVaIeOM1hnvfRaN6ieA90DkD1l_X11byiAPMKagaCvShmIIQqqZDsZTGjNYeSAZWvizcxPlAKnNd8Vvxb7SfTJTJasvl7_ImeLIfxD_luEpLRk7RDsvIxmdYNLh3Jve8xkG9jdMn9RvLVmUjuUsAYMRLnydWivJsOKWHAnlzuxzDtxkPMihvzw2_Idud8uXTDnmyD8dHFNIb4tnhlzRDx3XleFPfL6-3itlxvblaLy3XZcdCpVAysrbWAvtUtZa1mkllhWMcs8F4ZIfu-arVBZSVHiZKihQ6EatEw5IZdFJ9P3imMvw4YU7N3scNhMB7zkQ1QoEpXSlYZ_fgf-jAegs_XNRoqDpKpOkP0BHVhjDGgbabg9iYcs6l56qTJnTRPnTTnTnLk09lrYmcGm5_QuficqwRXStQycx9OnEPE57Wkqta6Zo-xCpVA</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Kim, Sungchul</creator><creator>Jeon, Yong Woo</creator><creator>Kim, Yongsik</creator><creator>Kong, Dongsik</creator><creator>Jung, Hyun Kwang</creator><creator>Bae, Min-Kyung</creator><creator>Lee, Je-Hun</creator><creator>Ahn, Byung Du</creator><creator>Park, Sei Yong</creator><creator>Park, Jun-Hyun</creator><creator>Park, Jaewoo</creator><creator>Kwon, Hyuck-In</creator><creator>Kim, Dong Myong</creator><creator>Kim, Dae Hwan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201201</creationdate><title>Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors</title><author>Kim, Sungchul ; Jeon, Yong Woo ; Kim, Yongsik ; Kong, Dongsik ; Jung, Hyun Kwang ; Bae, Min-Kyung ; Lee, Je-Hun ; Ahn, Byung Du ; Park, Sei Yong ; Park, Jun-Hyun ; Park, Jaewoo ; Kwon, Hyuck-In ; Kim, Dong Myong ; Kim, Dae Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-831ff7951db9b03b9363f5a3c3f14d8a56dd2b9ae8f64e6e60ef1c158bea3e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs)</topic><topic>Applied sciences</topic><topic>Bias</topic><topic>Charge carrier processes</topic><topic>charge trapping</topic><topic>Density of states</topic><topic>Devices</topic><topic>electrical stability</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>hbox{O}_{2} flow rate (OFR)</topic><topic>Instability</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stability</topic><topic>Stress</topic><topic>Stresses</topic><topic>subgap density of states (DOS)</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sungchul</creatorcontrib><creatorcontrib>Jeon, Yong Woo</creatorcontrib><creatorcontrib>Kim, Yongsik</creatorcontrib><creatorcontrib>Kong, Dongsik</creatorcontrib><creatorcontrib>Jung, Hyun Kwang</creatorcontrib><creatorcontrib>Bae, Min-Kyung</creatorcontrib><creatorcontrib>Lee, Je-Hun</creatorcontrib><creatorcontrib>Ahn, Byung Du</creatorcontrib><creatorcontrib>Park, Sei Yong</creatorcontrib><creatorcontrib>Park, Jun-Hyun</creatorcontrib><creatorcontrib>Park, Jaewoo</creatorcontrib><creatorcontrib>Kwon, Hyuck-In</creatorcontrib><creatorcontrib>Kim, Dong Myong</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Sungchul</au><au>Jeon, Yong Woo</au><au>Kim, Yongsik</au><au>Kong, Dongsik</au><au>Jung, Hyun Kwang</au><au>Bae, Min-Kyung</au><au>Lee, Je-Hun</au><au>Ahn, Byung Du</au><au>Park, Sei Yong</au><au>Park, Jun-Hyun</au><au>Park, Jaewoo</au><au>Kwon, Hyuck-In</au><au>Kim, Dong Myong</au><au>Kim, Dae Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2012-01</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>62</spage><epage>64</epage><pages>62-64</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>The effect of O 2 flow rate (OFR) during channel deposition is investigated on the electrical instability of the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under positive gate bias stresses. From the transfer curves measured before and after bias stresses, we can observe that the high OFR degrades the electrical stability and causes the large threshold voltage shift (ΔV T ) in a-IGZO TFTs. To elucidate the origin of the observed phenomenon, we extract and compare the subgap density of states (DOS) in devices with various OFRs. The extracted DOS shows that the subgap states become higher with the increase of OFR in a wide range of bandgap, and the enhanced electron trapping due to the increased number of trap states is considered as the cause of larger ΔV T in higher OFR devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2011.2173153</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2012-01, Vol.33 (1), p.62-64 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_journals_912416387 |
source | IEEE Electronic Library (IEL) |
subjects | Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) Applied sciences Bias Charge carrier processes charge trapping Density of states Devices electrical stability Electronics Exact sciences and technology Flow rate hbox{O}_{2} flow rate (OFR) Instability Logic gates Mathematical model Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stability Stress Stresses subgap density of states (DOS) Thin film transistors Thin films Threshold voltage Transistors |
title | Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Oxygen%20Flow%20Rate%20on%20the%20Instability%20Under%20Positive%20Bias%20Stresses%20in%20DC-Sputtered%20Amorphous%20InGaZnO%20Thin-Film%20Transistors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Kim,%20Sungchul&rft.date=2012-01&rft.volume=33&rft.issue=1&rft.spage=62&rft.epage=64&rft.pages=62-64&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2011.2173153&rft_dat=%3Cproquest_RIE%3E2545851321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912416387&rft_id=info:pmid/&rft_ieee_id=6087997&rfr_iscdi=true |