New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects

In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2009-03, Vol.8 (2), p.214-225
Hauptverfasser: Sarto, M.S., Tamburrano, A., D'Amore, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 2
container_start_page 214
container_title IEEE transactions on nanotechnology
container_volume 8
creator Sarto, M.S.
Tamburrano, A.
D'Amore, M.
description In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.
doi_str_mv 10.1109/TNANO.2008.2010253
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912382155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711093</ieee_id><sourcerecordid>889379794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxRdRsFa_gF4WQTxtzZ9NkxxrqbWg7aWit5DNzpYt26Qmu4rf3tSWHrzMDDO_9xheklxjNMAYyYflfDRfDAhCIhaMCKMnSQ_LHGdxxU7jzOgww4R9nCcXIawRwnzIRC-ZzuE7nTRgWu9s9q6_YNXVJWSPOkCZvroSmtqu0sr5dKx94Ww619a1XQHpzLbgjbM2isNlclbpJsDVofeTt6fJcvycvSyms_HoJTOUDduMFZwLUpqSFrkspBSiKEyJTU6oMZVkvOBUSsQM53kkK8TAEJqXldRIIDGk_eR-77v17rOD0KpNHQw0jbbguqCEkJRLLvNI3v4j167zNj6nJCZUEMxYhMgeMt6F4KFSW19vtP9RGKldsuovWbVLVh2SjaK7g7MORjeV19bU4agkOBcoCiJ3s-dqADiec77zpfQXsdqAZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912382155</pqid></control><display><type>article</type><title>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</title><source>IEEE Electronic Library (IEL)</source><creator>Sarto, M.S. ; Tamburrano, A. ; D'Amore, M.</creator><creatorcontrib>Sarto, M.S. ; Tamburrano, A. ; D'Amore, M.</creatorcontrib><description>In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2008.2010253</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bundles ; Carbon nanotubes ; Computer simulation ; Conducting materials ; Copper ; Cross-disciplinary physics: materials science; rheology ; Damping ; Design. Technologies. Operation analysis. Testing ; Electron scattering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Electrons ; Exact sciences and technology ; Fermi surfaces ; Formalism ; Frequency domain analysis ; Integrated circuit interconnections ; Integrated circuits ; Materials science ; Mathematical models ; Mechanical factors ; Nanointerconnect ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Physics ; Radio frequency ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal analysis ; signal propagation ; Single wall carbon nanotubes ; single-wall carbon nanotube (SWCNT) ; Thermal conductivity ; transmission line (TL)</subject><ispartof>IEEE transactions on nanotechnology, 2009-03, Vol.8 (2), p.214-225</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</citedby><cites>FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4711093$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21480200$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarto, M.S.</creatorcontrib><creatorcontrib>Tamburrano, A.</creatorcontrib><creatorcontrib>D'Amore, M.</creatorcontrib><title>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.</description><subject>Applied sciences</subject><subject>Bundles</subject><subject>Carbon nanotubes</subject><subject>Computer simulation</subject><subject>Conducting materials</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Damping</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electron scattering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fermi surfaces</subject><subject>Formalism</subject><subject>Frequency domain analysis</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical factors</subject><subject>Nanointerconnect</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Radio frequency</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal analysis</subject><subject>signal propagation</subject><subject>Single wall carbon nanotubes</subject><subject>single-wall carbon nanotube (SWCNT)</subject><subject>Thermal conductivity</subject><subject>transmission line (TL)</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxRdRsFa_gF4WQTxtzZ9NkxxrqbWg7aWit5DNzpYt26Qmu4rf3tSWHrzMDDO_9xheklxjNMAYyYflfDRfDAhCIhaMCKMnSQ_LHGdxxU7jzOgww4R9nCcXIawRwnzIRC-ZzuE7nTRgWu9s9q6_YNXVJWSPOkCZvroSmtqu0sr5dKx94Ww619a1XQHpzLbgjbM2isNlclbpJsDVofeTt6fJcvycvSyms_HoJTOUDduMFZwLUpqSFrkspBSiKEyJTU6oMZVkvOBUSsQM53kkK8TAEJqXldRIIDGk_eR-77v17rOD0KpNHQw0jbbguqCEkJRLLvNI3v4j167zNj6nJCZUEMxYhMgeMt6F4KFSW19vtP9RGKldsuovWbVLVh2SjaK7g7MORjeV19bU4agkOBcoCiJ3s-dqADiec77zpfQXsdqAZQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Sarto, M.S.</creator><creator>Tamburrano, A.</creator><creator>D'Amore, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</title><author>Sarto, M.S. ; Tamburrano, A. ; D'Amore, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bundles</topic><topic>Carbon nanotubes</topic><topic>Computer simulation</topic><topic>Conducting materials</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Damping</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electron scattering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fermi surfaces</topic><topic>Formalism</topic><topic>Frequency domain analysis</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical factors</topic><topic>Nanointerconnect</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Radio frequency</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal analysis</topic><topic>signal propagation</topic><topic>Single wall carbon nanotubes</topic><topic>single-wall carbon nanotube (SWCNT)</topic><topic>Thermal conductivity</topic><topic>transmission line (TL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarto, M.S.</creatorcontrib><creatorcontrib>Tamburrano, A.</creatorcontrib><creatorcontrib>D'Amore, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarto, M.S.</au><au>Tamburrano, A.</au><au>D'Amore, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>8</volume><issue>2</issue><spage>214</spage><epage>225</epage><pages>214-225</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2008.2010253</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2009-03, Vol.8 (2), p.214-225
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_journals_912382155
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bundles
Carbon nanotubes
Computer simulation
Conducting materials
Copper
Cross-disciplinary physics: materials science
rheology
Damping
Design. Technologies. Operation analysis. Testing
Electron scattering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Electrons
Exact sciences and technology
Fermi surfaces
Formalism
Frequency domain analysis
Integrated circuit interconnections
Integrated circuits
Materials science
Mathematical models
Mechanical factors
Nanointerconnect
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Physics
Radio frequency
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal analysis
signal propagation
Single wall carbon nanotubes
single-wall carbon nanotube (SWCNT)
Thermal conductivity
transmission line (TL)
title New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Electron-Waveguide-Based%20Modeling%20for%20Carbon%20Nanotube%20Interconnects&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Sarto,%20M.S.&rft.date=2009-03-01&rft.volume=8&rft.issue=2&rft.spage=214&rft.epage=225&rft.pages=214-225&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2008.2010253&rft_dat=%3Cproquest_RIE%3E889379794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912382155&rft_id=info:pmid/&rft_ieee_id=4711093&rfr_iscdi=true