New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects
In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2009-03, Vol.8 (2), p.214-225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 2 |
container_start_page | 214 |
container_title | IEEE transactions on nanotechnology |
container_volume | 8 |
creator | Sarto, M.S. Tamburrano, A. D'Amore, M. |
description | In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented. |
doi_str_mv | 10.1109/TNANO.2008.2010253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912382155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4711093</ieee_id><sourcerecordid>889379794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxRdRsFa_gF4WQTxtzZ9NkxxrqbWg7aWit5DNzpYt26Qmu4rf3tSWHrzMDDO_9xheklxjNMAYyYflfDRfDAhCIhaMCKMnSQ_LHGdxxU7jzOgww4R9nCcXIawRwnzIRC-ZzuE7nTRgWu9s9q6_YNXVJWSPOkCZvroSmtqu0sr5dKx94Ww619a1XQHpzLbgjbM2isNlclbpJsDVofeTt6fJcvycvSyms_HoJTOUDduMFZwLUpqSFrkspBSiKEyJTU6oMZVkvOBUSsQM53kkK8TAEJqXldRIIDGk_eR-77v17rOD0KpNHQw0jbbguqCEkJRLLvNI3v4j167zNj6nJCZUEMxYhMgeMt6F4KFSW19vtP9RGKldsuovWbVLVh2SjaK7g7MORjeV19bU4agkOBcoCiJ3s-dqADiec77zpfQXsdqAZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912382155</pqid></control><display><type>article</type><title>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</title><source>IEEE Electronic Library (IEL)</source><creator>Sarto, M.S. ; Tamburrano, A. ; D'Amore, M.</creator><creatorcontrib>Sarto, M.S. ; Tamburrano, A. ; D'Amore, M.</creatorcontrib><description>In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2008.2010253</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bundles ; Carbon nanotubes ; Computer simulation ; Conducting materials ; Copper ; Cross-disciplinary physics: materials science; rheology ; Damping ; Design. Technologies. Operation analysis. Testing ; Electron scattering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Electrons ; Exact sciences and technology ; Fermi surfaces ; Formalism ; Frequency domain analysis ; Integrated circuit interconnections ; Integrated circuits ; Materials science ; Mathematical models ; Mechanical factors ; Nanointerconnect ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Physics ; Radio frequency ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal analysis ; signal propagation ; Single wall carbon nanotubes ; single-wall carbon nanotube (SWCNT) ; Thermal conductivity ; transmission line (TL)</subject><ispartof>IEEE transactions on nanotechnology, 2009-03, Vol.8 (2), p.214-225</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</citedby><cites>FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4711093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4711093$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21480200$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarto, M.S.</creatorcontrib><creatorcontrib>Tamburrano, A.</creatorcontrib><creatorcontrib>D'Amore, M.</creatorcontrib><title>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.</description><subject>Applied sciences</subject><subject>Bundles</subject><subject>Carbon nanotubes</subject><subject>Computer simulation</subject><subject>Conducting materials</subject><subject>Copper</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Damping</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electron scattering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fermi surfaces</subject><subject>Formalism</subject><subject>Frequency domain analysis</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical factors</subject><subject>Nanointerconnect</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Radio frequency</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal analysis</subject><subject>signal propagation</subject><subject>Single wall carbon nanotubes</subject><subject>single-wall carbon nanotube (SWCNT)</subject><subject>Thermal conductivity</subject><subject>transmission line (TL)</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxRdRsFa_gF4WQTxtzZ9NkxxrqbWg7aWit5DNzpYt26Qmu4rf3tSWHrzMDDO_9xheklxjNMAYyYflfDRfDAhCIhaMCKMnSQ_LHGdxxU7jzOgww4R9nCcXIawRwnzIRC-ZzuE7nTRgWu9s9q6_YNXVJWSPOkCZvroSmtqu0sr5dKx94Ww619a1XQHpzLbgjbM2isNlclbpJsDVofeTt6fJcvycvSyms_HoJTOUDduMFZwLUpqSFrkspBSiKEyJTU6oMZVkvOBUSsQM53kkK8TAEJqXldRIIDGk_eR-77v17rOD0KpNHQw0jbbguqCEkJRLLvNI3v4j167zNj6nJCZUEMxYhMgeMt6F4KFSW19vtP9RGKldsuovWbVLVh2SjaK7g7MORjeV19bU4agkOBcoCiJ3s-dqADiec77zpfQXsdqAZQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Sarto, M.S.</creator><creator>Tamburrano, A.</creator><creator>D'Amore, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090301</creationdate><title>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</title><author>Sarto, M.S. ; Tamburrano, A. ; D'Amore, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-5b7782dcd3b49b9988bbcd1c423ccf957b739905c774778f05ec234df9a080863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bundles</topic><topic>Carbon nanotubes</topic><topic>Computer simulation</topic><topic>Conducting materials</topic><topic>Copper</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Damping</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electron scattering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fermi surfaces</topic><topic>Formalism</topic><topic>Frequency domain analysis</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical factors</topic><topic>Nanointerconnect</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Radio frequency</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal analysis</topic><topic>signal propagation</topic><topic>Single wall carbon nanotubes</topic><topic>single-wall carbon nanotube (SWCNT)</topic><topic>Thermal conductivity</topic><topic>transmission line (TL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarto, M.S.</creatorcontrib><creatorcontrib>Tamburrano, A.</creatorcontrib><creatorcontrib>D'Amore, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarto, M.S.</au><au>Tamburrano, A.</au><au>D'Amore, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>8</volume><issue>2</issue><spage>214</spage><epage>225</epage><pages>214-225</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>In this paper, hybrid transmission line-quantum mechanical models are proposed for the analysis of the signal propagation along metallic and quasi-metallic single-wall carbon nanotube (SWCNT) and bundles of SWCNTs. The analysis is based on the general assumption that the SWCNT is characterized by n energy subbands crossing the Fermi level. The proposed model is derived from a new development of the electron waveguide formalism in time and frequency domains, taking into account the damping effect produced by electron scattering. Simulation results are compared with experimental measurements available in literature in order to validate the developed models. Numerical calculations are performed in order to predict the current carrying capability of SWCNT interconnects having different configurations in the low-voltage bias hypothesis. Comparison with the performances of scaled copper interconnects is also presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2008.2010253</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2009-03, Vol.8 (2), p.214-225 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_journals_912382155 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bundles Carbon nanotubes Computer simulation Conducting materials Copper Cross-disciplinary physics: materials science rheology Damping Design. Technologies. Operation analysis. Testing Electron scattering Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Electrons Exact sciences and technology Fermi surfaces Formalism Frequency domain analysis Integrated circuit interconnections Integrated circuits Materials science Mathematical models Mechanical factors Nanointerconnect Nanoscale materials and structures: fabrication and characterization Nanotubes Physics Radio frequency Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Signal analysis signal propagation Single wall carbon nanotubes single-wall carbon nanotube (SWCNT) Thermal conductivity transmission line (TL) |
title | New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Electron-Waveguide-Based%20Modeling%20for%20Carbon%20Nanotube%20Interconnects&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Sarto,%20M.S.&rft.date=2009-03-01&rft.volume=8&rft.issue=2&rft.spage=214&rft.epage=225&rft.pages=214-225&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2008.2010253&rft_dat=%3Cproquest_RIE%3E889379794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912382155&rft_id=info:pmid/&rft_ieee_id=4711093&rfr_iscdi=true |