Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm

The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2009-12, Vol.17 (6), p.1336-1352
Hauptverfasser: Song, Chonghui, Ye, Jinchun, Liu, Derong, Kang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue 6
container_start_page 1336
container_title IEEE transactions on fuzzy systems
container_volume 17
creator Song, Chonghui
Ye, Jinchun
Liu, Derong
Kang, Qi
description The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.
doi_str_mv 10.1109/TFUZZ.2009.2031560
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912379491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5232878</ieee_id><sourcerecordid>2545545301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEElD4A7BELEyBs50vj1BRQEJUomVhsRznXFwlcbGTofn1uBQxsNydTs97Oj1RdEHghhDgt8vZ-8fHDQXgoTCS5XAQnRCekgSApYdhhpwleQH5cXTq_RqApBkpTyLxiB062ZgR6_gNFdamW8VP1pnRdvHUdr2zTWx1PBvGcRsvtr7H1sf30gc-EK9Di84o2cTzTW9aM8rehPVdswon-s_2LDrSsvF4_tsn0WL2sJw-JS_zx-fp3UuiGM37pNIcaFZIBVWt0roArCDjlOagFJUV1RlyxQtN01yrkvO80mldywpVRhljk-h6f3Xj7NeAvhet8QqbRnZoBy_KIgsaMloG8uofubaD68JrghPKCp5yEiC6h5Sz3jvUYuNMK91WEBA73-LHt9j5Fr--Q-hyHzKI-BcI79GyKNk3PRl9yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912379491</pqid></control><display><type>article</type><title>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Chonghui ; Ye, Jinchun ; Liu, Derong ; Kang, Qi</creator><creatorcontrib>Song, Chonghui ; Ye, Jinchun ; Liu, Derong ; Kang, Qi</creatorcontrib><description>The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2009.2031560</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Control systems ; Controllers ; Design optimization ; Difference equations ; Dynamic programming ; Dynamical systems ; Dynamics ; Finite difference methods ; Fuzzy control ; Fuzzy systems ; Lyapunov method ; Mathematical analysis ; Mathematical models ; Numerical analysis ; numerical methods ; Optimal control ; Optimization ; Optimization methods ; parallel processing ; receding horizon control (RHC) ; Studies</subject><ispartof>IEEE transactions on fuzzy systems, 2009-12, Vol.17 (6), p.1336-1352</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</citedby><cites>FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5232878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5232878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Chonghui</creatorcontrib><creatorcontrib>Ye, Jinchun</creatorcontrib><creatorcontrib>Liu, Derong</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><title>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design optimization</subject><subject>Difference equations</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Finite difference methods</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Lyapunov method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>numerical methods</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>parallel processing</subject><subject>receding horizon control (RHC)</subject><subject>Studies</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEElD4A7BELEyBs50vj1BRQEJUomVhsRznXFwlcbGTofn1uBQxsNydTs97Oj1RdEHghhDgt8vZ-8fHDQXgoTCS5XAQnRCekgSApYdhhpwleQH5cXTq_RqApBkpTyLxiB062ZgR6_gNFdamW8VP1pnRdvHUdr2zTWx1PBvGcRsvtr7H1sf30gc-EK9Di84o2cTzTW9aM8rehPVdswon-s_2LDrSsvF4_tsn0WL2sJw-JS_zx-fp3UuiGM37pNIcaFZIBVWt0roArCDjlOagFJUV1RlyxQtN01yrkvO80mldywpVRhljk-h6f3Xj7NeAvhet8QqbRnZoBy_KIgsaMloG8uofubaD68JrghPKCp5yEiC6h5Sz3jvUYuNMK91WEBA73-LHt9j5Fr--Q-hyHzKI-BcI79GyKNk3PRl9yQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Song, Chonghui</creator><creator>Ye, Jinchun</creator><creator>Liu, Derong</creator><creator>Kang, Qi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091201</creationdate><title>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</title><author>Song, Chonghui ; Ye, Jinchun ; Liu, Derong ; Kang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design optimization</topic><topic>Difference equations</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Finite difference methods</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Lyapunov method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>numerical methods</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>parallel processing</topic><topic>receding horizon control (RHC)</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chonghui</creatorcontrib><creatorcontrib>Ye, Jinchun</creatorcontrib><creatorcontrib>Liu, Derong</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Chonghui</au><au>Ye, Jinchun</au><au>Liu, Derong</au><au>Kang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>17</volume><issue>6</issue><spage>1336</spage><epage>1352</epage><pages>1336-1352</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2009.2031560</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2009-12, Vol.17 (6), p.1336-1352
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_912379491
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Control systems
Controllers
Design optimization
Difference equations
Dynamic programming
Dynamical systems
Dynamics
Finite difference methods
Fuzzy control
Fuzzy systems
Lyapunov method
Mathematical analysis
Mathematical models
Numerical analysis
numerical methods
Optimal control
Optimization
Optimization methods
parallel processing
receding horizon control (RHC)
Studies
title Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Receding%20Horizon%20Control%20of%20Fuzzy%20Systems%20Based%20on%20Numerical%20Optimization%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Song,%20Chonghui&rft.date=2009-12-01&rft.volume=17&rft.issue=6&rft.spage=1336&rft.epage=1352&rft.pages=1336-1352&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2009.2031560&rft_dat=%3Cproquest_RIE%3E2545545301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912379491&rft_id=info:pmid/&rft_ieee_id=5232878&rfr_iscdi=true