Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm
The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2009-12, Vol.17 (6), p.1336-1352 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1352 |
---|---|
container_issue | 6 |
container_start_page | 1336 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 17 |
creator | Song, Chonghui Ye, Jinchun Liu, Derong Kang, Qi |
description | The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced. |
doi_str_mv | 10.1109/TFUZZ.2009.2031560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912379491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5232878</ieee_id><sourcerecordid>2545545301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEElD4A7BELEyBs50vj1BRQEJUomVhsRznXFwlcbGTofn1uBQxsNydTs97Oj1RdEHghhDgt8vZ-8fHDQXgoTCS5XAQnRCekgSApYdhhpwleQH5cXTq_RqApBkpTyLxiB062ZgR6_gNFdamW8VP1pnRdvHUdr2zTWx1PBvGcRsvtr7H1sf30gc-EK9Di84o2cTzTW9aM8rehPVdswon-s_2LDrSsvF4_tsn0WL2sJw-JS_zx-fp3UuiGM37pNIcaFZIBVWt0roArCDjlOagFJUV1RlyxQtN01yrkvO80mldywpVRhljk-h6f3Xj7NeAvhet8QqbRnZoBy_KIgsaMloG8uofubaD68JrghPKCp5yEiC6h5Sz3jvUYuNMK91WEBA73-LHt9j5Fr--Q-hyHzKI-BcI79GyKNk3PRl9yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912379491</pqid></control><display><type>article</type><title>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Chonghui ; Ye, Jinchun ; Liu, Derong ; Kang, Qi</creator><creatorcontrib>Song, Chonghui ; Ye, Jinchun ; Liu, Derong ; Kang, Qi</creatorcontrib><description>The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2009.2031560</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Control systems ; Controllers ; Design optimization ; Difference equations ; Dynamic programming ; Dynamical systems ; Dynamics ; Finite difference methods ; Fuzzy control ; Fuzzy systems ; Lyapunov method ; Mathematical analysis ; Mathematical models ; Numerical analysis ; numerical methods ; Optimal control ; Optimization ; Optimization methods ; parallel processing ; receding horizon control (RHC) ; Studies</subject><ispartof>IEEE transactions on fuzzy systems, 2009-12, Vol.17 (6), p.1336-1352</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</citedby><cites>FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5232878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5232878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Chonghui</creatorcontrib><creatorcontrib>Ye, Jinchun</creatorcontrib><creatorcontrib>Liu, Derong</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><title>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design optimization</subject><subject>Difference equations</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Finite difference methods</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Lyapunov method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>numerical methods</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>parallel processing</subject><subject>receding horizon control (RHC)</subject><subject>Studies</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEElD4A7BELEyBs50vj1BRQEJUomVhsRznXFwlcbGTofn1uBQxsNydTs97Oj1RdEHghhDgt8vZ-8fHDQXgoTCS5XAQnRCekgSApYdhhpwleQH5cXTq_RqApBkpTyLxiB062ZgR6_gNFdamW8VP1pnRdvHUdr2zTWx1PBvGcRsvtr7H1sf30gc-EK9Di84o2cTzTW9aM8rehPVdswon-s_2LDrSsvF4_tsn0WL2sJw-JS_zx-fp3UuiGM37pNIcaFZIBVWt0roArCDjlOagFJUV1RlyxQtN01yrkvO80mldywpVRhljk-h6f3Xj7NeAvhet8QqbRnZoBy_KIgsaMloG8uofubaD68JrghPKCp5yEiC6h5Sz3jvUYuNMK91WEBA73-LHt9j5Fr--Q-hyHzKI-BcI79GyKNk3PRl9yQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Song, Chonghui</creator><creator>Ye, Jinchun</creator><creator>Liu, Derong</creator><creator>Kang, Qi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091201</creationdate><title>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</title><author>Song, Chonghui ; Ye, Jinchun ; Liu, Derong ; Kang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bf90257ac0bdc4d70eb0592260cc2ab2f5e9c97f246fc8996bf4ddabec52333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design optimization</topic><topic>Difference equations</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Finite difference methods</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Lyapunov method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>numerical methods</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>parallel processing</topic><topic>receding horizon control (RHC)</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chonghui</creatorcontrib><creatorcontrib>Ye, Jinchun</creatorcontrib><creatorcontrib>Liu, Derong</creatorcontrib><creatorcontrib>Kang, Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Chonghui</au><au>Ye, Jinchun</au><au>Liu, Derong</au><au>Kang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>17</volume><issue>6</issue><spage>1336</spage><epage>1352</epage><pages>1336-1352</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>The optimal control of fuzzy systems with constraints is still an open problem. Our focus concerns the optimal control problem of fuzzy systems derived from receding horizon control (RHC) schemes. We consider methods to numerically compute the value function for general fuzzy systems. The numerical method that is developed using the finite difference with sigmoidal transformation is a stable and convergent algorithm for the Hamilton-Jacobi-Bellman (HJB) equation. An optimization procedure is developed to increase the calculation accuracy with less computation time. A parallel-processing method is employed in the optimization procedure. The optimization results are applied to the controller design of general fuzzy dynamic systems. Employing the principle of conventional RHC schemes, RHC-form controllers are designed for some classes of fuzzy dynamic systems. The basic ideas are as follows. First, the value function is calculated by numerical methods. Then, the value function is used as controller-design parameters to redesign RHC controllers for fuzzy systems, which is motivated by the inverse Lyapunov function design method. It is proven that the closed-loop system is asymptotically stable. An engineering implementation of the controller redesign scheme is discussed. Meanwhile, the parallel-processing framework that can improve the closed-loop performance is also introduced.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2009.2031560</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2009-12, Vol.17 (6), p.1336-1352 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_912379491 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Control systems Controllers Design optimization Difference equations Dynamic programming Dynamical systems Dynamics Finite difference methods Fuzzy control Fuzzy systems Lyapunov method Mathematical analysis Mathematical models Numerical analysis numerical methods Optimal control Optimization Optimization methods parallel processing receding horizon control (RHC) Studies |
title | Generalized Receding Horizon Control of Fuzzy Systems Based on Numerical Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Receding%20Horizon%20Control%20of%20Fuzzy%20Systems%20Based%20on%20Numerical%20Optimization%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Song,%20Chonghui&rft.date=2009-12-01&rft.volume=17&rft.issue=6&rft.spage=1336&rft.epage=1352&rft.pages=1336-1352&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2009.2031560&rft_dat=%3Cproquest_RIE%3E2545545301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912379491&rft_id=info:pmid/&rft_ieee_id=5232878&rfr_iscdi=true |