Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy

Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2009-11, Vol.5 (4), p.495-506
Hauptverfasser: Ning, A., Lau, H., Zhao, Y., Wong, T.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 4
container_start_page 495
container_title IEEE transactions on industrial informatics
container_volume 5
creator Ning, A.
Lau, H.
Zhao, Y.
Wong, T.T.
description Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.
doi_str_mv 10.1109/TII.2009.2031433
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912378284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5256154</ieee_id><sourcerecordid>2545547251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</originalsourceid><addsrcrecordid>eNpdUE1PwzAMrRBIfN6RuEScuBTspFmbI2IMJo0PIThHaetAIGtH0grt39MyxIGLny2_92S_JDlGOEcEdfE8n59zADUUgZkQW8keqgxTAAnbQy8lpmLY7Sb7Mb4DiByE2kto1nvrvF9S07HWsifqjPMU2JSWpqlZuWYv0TWvrHsjdjddpA-rzi2NZ_fUhx_ovtrwwR4D1a7qXNuwUTalysVxeGy9q9aHyY41PtLRLx4kL7Pr56vbdPFwM7-6XKSV4KJLM8tLJZWwpq5IWmMUFhnPc7QoVWmySS2ULQyvBWUIhczLAkqqASuhwEAmDpKzje8qtJ89xU4vXazIe9NQ20eNkxx5rhSKgXr6j_re9qEZrtMKucgLXox-sCFVoY0xkNWrMHwf1hpBj7HrIXY9xq5_Yx8kJxuJI6I_uuRygjIT36i-fRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912378284</pqid></control><display><type>article</type><title>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</title><source>IEEE Electronic Library (IEL)</source><creator>Ning, A. ; Lau, H. ; Zhao, Y. ; Wong, T.T.</creator><creatorcontrib>Ning, A. ; Lau, H. ; Zhao, Y. ; Wong, T.T.</creatorcontrib><description>Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2009.2031433</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Accuracy ; Business ; Costs ; Decision rules ; Demand ; demand prediction ; Factorials ; Food products ; Marketing ; Mathematical models ; minimum description length ; neural network ; Neural networks ; Policies ; Predictive models ; Replenishment ; Supply chain management ; Supply chains ; Time series</subject><ispartof>IEEE transactions on industrial informatics, 2009-11, Vol.5 (4), p.495-506</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</citedby><cites>FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5256154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5256154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning, A.</creatorcontrib><creatorcontrib>Lau, H.</creatorcontrib><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Wong, T.T.</creatorcontrib><title>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Business</subject><subject>Costs</subject><subject>Decision rules</subject><subject>Demand</subject><subject>demand prediction</subject><subject>Factorials</subject><subject>Food products</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>minimum description length</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Policies</subject><subject>Predictive models</subject><subject>Replenishment</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Time series</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUE1PwzAMrRBIfN6RuEScuBTspFmbI2IMJo0PIThHaetAIGtH0grt39MyxIGLny2_92S_JDlGOEcEdfE8n59zADUUgZkQW8keqgxTAAnbQy8lpmLY7Sb7Mb4DiByE2kto1nvrvF9S07HWsifqjPMU2JSWpqlZuWYv0TWvrHsjdjddpA-rzi2NZ_fUhx_ovtrwwR4D1a7qXNuwUTalysVxeGy9q9aHyY41PtLRLx4kL7Pr56vbdPFwM7-6XKSV4KJLM8tLJZWwpq5IWmMUFhnPc7QoVWmySS2ULQyvBWUIhczLAkqqASuhwEAmDpKzje8qtJ89xU4vXazIe9NQ20eNkxx5rhSKgXr6j_re9qEZrtMKucgLXox-sCFVoY0xkNWrMHwf1hpBj7HrIXY9xq5_Yx8kJxuJI6I_uuRygjIT36i-fRM</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Ning, A.</creator><creator>Lau, H.</creator><creator>Zhao, Y.</creator><creator>Wong, T.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</title><author>Ning, A. ; Lau, H. ; Zhao, Y. ; Wong, T.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Business</topic><topic>Costs</topic><topic>Decision rules</topic><topic>Demand</topic><topic>demand prediction</topic><topic>Factorials</topic><topic>Food products</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>minimum description length</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Policies</topic><topic>Predictive models</topic><topic>Replenishment</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Ning, A.</creatorcontrib><creatorcontrib>Lau, H.</creatorcontrib><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Wong, T.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning, A.</au><au>Lau, H.</au><au>Zhao, Y.</au><au>Wong, T.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>5</volume><issue>4</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2009.2031433</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2009-11, Vol.5 (4), p.495-506
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_912378284
source IEEE Electronic Library (IEL)
subjects Acceleration
Accuracy
Business
Costs
Decision rules
Demand
demand prediction
Factorials
Food products
Marketing
Mathematical models
minimum description length
neural network
Neural networks
Policies
Predictive models
Replenishment
Supply chain management
Supply chains
Time series
title Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fulfillment%20of%20Retailer%20Demand%20by%20Using%20the%20MDL-Optimal%20Neural%20Network%20Prediction%20and%20Decision%20Policy&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Ning,%20A.&rft.date=2009-11-01&rft.volume=5&rft.issue=4&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2009.2031433&rft_dat=%3Cproquest_RIE%3E2545547251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912378284&rft_id=info:pmid/&rft_ieee_id=5256154&rfr_iscdi=true