Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy
Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2009-11, Vol.5 (4), p.495-506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 4 |
container_start_page | 495 |
container_title | IEEE transactions on industrial informatics |
container_volume | 5 |
creator | Ning, A. Lau, H. Zhao, Y. Wong, T.T. |
description | Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction. |
doi_str_mv | 10.1109/TII.2009.2031433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912378284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5256154</ieee_id><sourcerecordid>2545547251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</originalsourceid><addsrcrecordid>eNpdUE1PwzAMrRBIfN6RuEScuBTspFmbI2IMJo0PIThHaetAIGtH0grt39MyxIGLny2_92S_JDlGOEcEdfE8n59zADUUgZkQW8keqgxTAAnbQy8lpmLY7Sb7Mb4DiByE2kto1nvrvF9S07HWsifqjPMU2JSWpqlZuWYv0TWvrHsjdjddpA-rzi2NZ_fUhx_ovtrwwR4D1a7qXNuwUTalysVxeGy9q9aHyY41PtLRLx4kL7Pr56vbdPFwM7-6XKSV4KJLM8tLJZWwpq5IWmMUFhnPc7QoVWmySS2ULQyvBWUIhczLAkqqASuhwEAmDpKzje8qtJ89xU4vXazIe9NQ20eNkxx5rhSKgXr6j_re9qEZrtMKucgLXox-sCFVoY0xkNWrMHwf1hpBj7HrIXY9xq5_Yx8kJxuJI6I_uuRygjIT36i-fRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912378284</pqid></control><display><type>article</type><title>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</title><source>IEEE Electronic Library (IEL)</source><creator>Ning, A. ; Lau, H. ; Zhao, Y. ; Wong, T.T.</creator><creatorcontrib>Ning, A. ; Lau, H. ; Zhao, Y. ; Wong, T.T.</creatorcontrib><description>Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2009.2031433</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Accuracy ; Business ; Costs ; Decision rules ; Demand ; demand prediction ; Factorials ; Food products ; Marketing ; Mathematical models ; minimum description length ; neural network ; Neural networks ; Policies ; Predictive models ; Replenishment ; Supply chain management ; Supply chains ; Time series</subject><ispartof>IEEE transactions on industrial informatics, 2009-11, Vol.5 (4), p.495-506</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</citedby><cites>FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5256154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5256154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning, A.</creatorcontrib><creatorcontrib>Lau, H.</creatorcontrib><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Wong, T.T.</creatorcontrib><title>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Business</subject><subject>Costs</subject><subject>Decision rules</subject><subject>Demand</subject><subject>demand prediction</subject><subject>Factorials</subject><subject>Food products</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>minimum description length</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Policies</subject><subject>Predictive models</subject><subject>Replenishment</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Time series</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUE1PwzAMrRBIfN6RuEScuBTspFmbI2IMJo0PIThHaetAIGtH0grt39MyxIGLny2_92S_JDlGOEcEdfE8n59zADUUgZkQW8keqgxTAAnbQy8lpmLY7Sb7Mb4DiByE2kto1nvrvF9S07HWsifqjPMU2JSWpqlZuWYv0TWvrHsjdjddpA-rzi2NZ_fUhx_ovtrwwR4D1a7qXNuwUTalysVxeGy9q9aHyY41PtLRLx4kL7Pr56vbdPFwM7-6XKSV4KJLM8tLJZWwpq5IWmMUFhnPc7QoVWmySS2ULQyvBWUIhczLAkqqASuhwEAmDpKzje8qtJ89xU4vXazIe9NQ20eNkxx5rhSKgXr6j_re9qEZrtMKucgLXox-sCFVoY0xkNWrMHwf1hpBj7HrIXY9xq5_Yx8kJxuJI6I_uuRygjIT36i-fRM</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Ning, A.</creator><creator>Lau, H.</creator><creator>Zhao, Y.</creator><creator>Wong, T.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</title><author>Ning, A. ; Lau, H. ; Zhao, Y. ; Wong, T.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-4f2b9593fadce5faa91842771f159ba46d39f8a2d3e410857b80bed01c390a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Business</topic><topic>Costs</topic><topic>Decision rules</topic><topic>Demand</topic><topic>demand prediction</topic><topic>Factorials</topic><topic>Food products</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>minimum description length</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Policies</topic><topic>Predictive models</topic><topic>Replenishment</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Ning, A.</creatorcontrib><creatorcontrib>Lau, H.</creatorcontrib><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Wong, T.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning, A.</au><au>Lau, H.</au><au>Zhao, Y.</au><au>Wong, T.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>5</volume><issue>4</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Prediction of demand plays a critical role in replenishment, in supply chain management. Accurate prediction of demand is a fundamental requirement and is also a great challenge to demand prediction models. This has motivated the research team to develop the minimum description length (MDL)-optimal neural network (NN) which can accurately predict retailer demands with various time lags. Moreover, a surrogate data method is proposed prior to the prediction to investigate the dynamical property (i.e., predictability) of various demand time series so as to avoid predicting random demands. In this paper, we validate the proposed ideas by a full factorial study combining its own decision rules. We describe improvements to prediction accuracy and propose a replenishment policy for a Hong Kong food wholesaler. This leads to a significant reduction in its operation costs and to an improvement in the level of retailer satisfaction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2009.2031433</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2009-11, Vol.5 (4), p.495-506 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_912378284 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Accuracy Business Costs Decision rules Demand demand prediction Factorials Food products Marketing Mathematical models minimum description length neural network Neural networks Policies Predictive models Replenishment Supply chain management Supply chains Time series |
title | Fulfillment of Retailer Demand by Using the MDL-Optimal Neural Network Prediction and Decision Policy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fulfillment%20of%20Retailer%20Demand%20by%20Using%20the%20MDL-Optimal%20Neural%20Network%20Prediction%20and%20Decision%20Policy&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Ning,%20A.&rft.date=2009-11-01&rft.volume=5&rft.issue=4&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2009.2031433&rft_dat=%3Cproquest_RIE%3E2545547251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912378284&rft_id=info:pmid/&rft_ieee_id=5256154&rfr_iscdi=true |