A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation

This paper reports on design, fabrication, and testing of a piezoelectrically actuated microvalve with integrated sensors for flow modulation at low temperatures. One envisioned application is to control the flow of a cryogen for distributed cooling with a high degree of temperature stability and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2009-08, Vol.18 (4), p.868-877
Hauptverfasser: Park, J.M., Evans, A.T., Rasmussen, K., Brosten, T.R., Nellis, G.F., Klein, S.A., Gianchandani, Y.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue 4
container_start_page 868
container_title Journal of microelectromechanical systems
container_volume 18
creator Park, J.M.
Evans, A.T.
Rasmussen, K.
Brosten, T.R.
Nellis, G.F.
Klein, S.A.
Gianchandani, Y.B.
description This paper reports on design, fabrication, and testing of a piezoelectrically actuated microvalve with integrated sensors for flow modulation at low temperatures. One envisioned application is to control the flow of a cryogen for distributed cooling with a high degree of temperature stability and a small thermal gradient. The valve consists of a micromachined die fabricated from a silicon-on-insulator wafer, a glass wafer, a commercially available piezoelectric stack actuator, and Macor ceramic encapsulation that has overall dimensions of 1.5 x 1.5 x 1.1 cm 3 . A piezoresistive pressure sensor and a thin-film Pt resistance temperature detector are integrated on the silicon die. The assembly process allows the implementation of normally open, partially open, and normally closed valves. At room temperature, gas flow modulation from 200 to 0 mL/min is achieved from 0- to 40-V actuation. Flow modulation at various temperatures from room temperature to 205 K is also reported. The pressure sensor has sensitivity of 356 ppm/kPa at room temperature, with temperature coefficient of sensitivity of -6507 ppm/K. The temperature sensor has sensitivity of 0.29 %/K. The valve and the sensors are tested across a wide range of temperatures, and the effect of temperature on performance is discussed.
doi_str_mv 10.1109/JMEMS.2009.2021097
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912365725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5067289</ieee_id><sourcerecordid>1022907046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-d5e0d9038efd4a9308f2f2d2f177590ad7099dcf8bbe8d7f746999200d4fd9113</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXwB-BiIfFxSZlx7Ng-VqsCRbv0sEUcgzceQ6ok3tpJEfx6vB_qgUMv9mjmeV9p5i2KlwhniGA-fFldrNZnHMDkh-eOelScoBFYAkr9ONcgValQqqfFs5RuAFAIXZ8UP87ZqmtjuLP9HbHv3fSLXY4T_Yx2IsfWNKYQE7OjY4s5TWHo_tpNT-xriIPt2XrKGPMhsmX4XV7TsKUsnCOxq33VhfF58cTbPtGL439afPt4cb34XC6vPl0uzpdlKzhMpZMEzkClyTthTQXac88d96iUNGCdAmNc6_VmQ9opr0RtjMkLO-GdQaxOi3cH320MtzOlqRm61FLf25HCnBqtJFQoRZ3Jtw-SVV2hQbGzfP8giMC5AQV7z9f_oTdhjmNeuDHIq1oqLjPED1C-d0qRfLON3WDjn-zU7GJs9jE2uxibY4xZ9ObobFNrex_t2HbpXslRY620ztyrA9cR0f1YQq24NtU_IlylHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912365725</pqid></control><display><type>article</type><title>A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation</title><source>IEEE Electronic Library (IEL)</source><creator>Park, J.M. ; Evans, A.T. ; Rasmussen, K. ; Brosten, T.R. ; Nellis, G.F. ; Klein, S.A. ; Gianchandani, Y.B.</creator><creatorcontrib>Park, J.M. ; Evans, A.T. ; Rasmussen, K. ; Brosten, T.R. ; Nellis, G.F. ; Klein, S.A. ; Gianchandani, Y.B.</creatorcontrib><description>This paper reports on design, fabrication, and testing of a piezoelectrically actuated microvalve with integrated sensors for flow modulation at low temperatures. One envisioned application is to control the flow of a cryogen for distributed cooling with a high degree of temperature stability and a small thermal gradient. The valve consists of a micromachined die fabricated from a silicon-on-insulator wafer, a glass wafer, a commercially available piezoelectric stack actuator, and Macor ceramic encapsulation that has overall dimensions of 1.5 x 1.5 x 1.1 cm 3 . A piezoresistive pressure sensor and a thin-film Pt resistance temperature detector are integrated on the silicon die. The assembly process allows the implementation of normally open, partially open, and normally closed valves. At room temperature, gas flow modulation from 200 to 0 mL/min is achieved from 0- to 40-V actuation. Flow modulation at various temperatures from room temperature to 205 K is also reported. The pressure sensor has sensitivity of 356 ppm/kPa at room temperature, with temperature coefficient of sensitivity of -6507 ppm/K. The temperature sensor has sensitivity of 0.29 %/K. The valve and the sensors are tested across a wide range of temperatures, and the effect of temperature on performance is discussed.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2009.2021097</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuation ; Applied sciences ; Cooling ; Cooling systems ; cryogenic ; Detectors ; Exact sciences and technology ; Fabrication ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mechanical engineering. Machine design ; Mechanical instruments, equipment and techniques ; microelectromechanical systems (MEMS) ; Micromechanical devices and systems ; Microvalves ; Modulation ; Physics ; piezoelectric ; piezoresistive pressure sensor ; Precision engineering, watch making ; Pressure sensors ; resistance temperature detector (RTD) ; Sensors ; Silicon on insulator technology ; Temperature ; Temperature control ; Temperature distribution ; Temperature sensors ; Testing ; Thermal stability ; Valves ; Wafers</subject><ispartof>Journal of microelectromechanical systems, 2009-08, Vol.18 (4), p.868-877</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-d5e0d9038efd4a9308f2f2d2f177590ad7099dcf8bbe8d7f746999200d4fd9113</citedby><cites>FETCH-LOGICAL-c420t-d5e0d9038efd4a9308f2f2d2f177590ad7099dcf8bbe8d7f746999200d4fd9113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5067289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5067289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21816788$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, J.M.</creatorcontrib><creatorcontrib>Evans, A.T.</creatorcontrib><creatorcontrib>Rasmussen, K.</creatorcontrib><creatorcontrib>Brosten, T.R.</creatorcontrib><creatorcontrib>Nellis, G.F.</creatorcontrib><creatorcontrib>Klein, S.A.</creatorcontrib><creatorcontrib>Gianchandani, Y.B.</creatorcontrib><title>A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>This paper reports on design, fabrication, and testing of a piezoelectrically actuated microvalve with integrated sensors for flow modulation at low temperatures. One envisioned application is to control the flow of a cryogen for distributed cooling with a high degree of temperature stability and a small thermal gradient. The valve consists of a micromachined die fabricated from a silicon-on-insulator wafer, a glass wafer, a commercially available piezoelectric stack actuator, and Macor ceramic encapsulation that has overall dimensions of 1.5 x 1.5 x 1.1 cm 3 . A piezoresistive pressure sensor and a thin-film Pt resistance temperature detector are integrated on the silicon die. The assembly process allows the implementation of normally open, partially open, and normally closed valves. At room temperature, gas flow modulation from 200 to 0 mL/min is achieved from 0- to 40-V actuation. Flow modulation at various temperatures from room temperature to 205 K is also reported. The pressure sensor has sensitivity of 356 ppm/kPa at room temperature, with temperature coefficient of sensitivity of -6507 ppm/K. The temperature sensor has sensitivity of 0.29 %/K. The valve and the sensors are tested across a wide range of temperatures, and the effect of temperature on performance is discussed.</description><subject>Actuation</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>cryogenic</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mechanical engineering. Machine design</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>microelectromechanical systems (MEMS)</subject><subject>Micromechanical devices and systems</subject><subject>Microvalves</subject><subject>Modulation</subject><subject>Physics</subject><subject>piezoelectric</subject><subject>piezoresistive pressure sensor</subject><subject>Precision engineering, watch making</subject><subject>Pressure sensors</subject><subject>resistance temperature detector (RTD)</subject><subject>Sensors</subject><subject>Silicon on insulator technology</subject><subject>Temperature</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>Testing</subject><subject>Thermal stability</subject><subject>Valves</subject><subject>Wafers</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1v1DAQhiMEEqXwB-BiIfFxSZlx7Ng-VqsCRbv0sEUcgzceQ6ok3tpJEfx6vB_qgUMv9mjmeV9p5i2KlwhniGA-fFldrNZnHMDkh-eOelScoBFYAkr9ONcgValQqqfFs5RuAFAIXZ8UP87ZqmtjuLP9HbHv3fSLXY4T_Yx2IsfWNKYQE7OjY4s5TWHo_tpNT-xriIPt2XrKGPMhsmX4XV7TsKUsnCOxq33VhfF58cTbPtGL439afPt4cb34XC6vPl0uzpdlKzhMpZMEzkClyTthTQXac88d96iUNGCdAmNc6_VmQ9opr0RtjMkLO-GdQaxOi3cH320MtzOlqRm61FLf25HCnBqtJFQoRZ3Jtw-SVV2hQbGzfP8giMC5AQV7z9f_oTdhjmNeuDHIq1oqLjPED1C-d0qRfLON3WDjn-zU7GJs9jE2uxibY4xZ9ObobFNrex_t2HbpXslRY620ztyrA9cR0f1YQq24NtU_IlylHA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Park, J.M.</creator><creator>Evans, A.T.</creator><creator>Rasmussen, K.</creator><creator>Brosten, T.R.</creator><creator>Nellis, G.F.</creator><creator>Klein, S.A.</creator><creator>Gianchandani, Y.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7QQ</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20090801</creationdate><title>A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation</title><author>Park, J.M. ; Evans, A.T. ; Rasmussen, K. ; Brosten, T.R. ; Nellis, G.F. ; Klein, S.A. ; Gianchandani, Y.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-d5e0d9038efd4a9308f2f2d2f177590ad7099dcf8bbe8d7f746999200d4fd9113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actuation</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>cryogenic</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mechanical engineering. Machine design</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>microelectromechanical systems (MEMS)</topic><topic>Micromechanical devices and systems</topic><topic>Microvalves</topic><topic>Modulation</topic><topic>Physics</topic><topic>piezoelectric</topic><topic>piezoresistive pressure sensor</topic><topic>Precision engineering, watch making</topic><topic>Pressure sensors</topic><topic>resistance temperature detector (RTD)</topic><topic>Sensors</topic><topic>Silicon on insulator technology</topic><topic>Temperature</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>Testing</topic><topic>Thermal stability</topic><topic>Valves</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, J.M.</creatorcontrib><creatorcontrib>Evans, A.T.</creatorcontrib><creatorcontrib>Rasmussen, K.</creatorcontrib><creatorcontrib>Brosten, T.R.</creatorcontrib><creatorcontrib>Nellis, G.F.</creatorcontrib><creatorcontrib>Klein, S.A.</creatorcontrib><creatorcontrib>Gianchandani, Y.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, J.M.</au><au>Evans, A.T.</au><au>Rasmussen, K.</au><au>Brosten, T.R.</au><au>Nellis, G.F.</au><au>Klein, S.A.</au><au>Gianchandani, Y.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>18</volume><issue>4</issue><spage>868</spage><epage>877</epage><pages>868-877</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>This paper reports on design, fabrication, and testing of a piezoelectrically actuated microvalve with integrated sensors for flow modulation at low temperatures. One envisioned application is to control the flow of a cryogen for distributed cooling with a high degree of temperature stability and a small thermal gradient. The valve consists of a micromachined die fabricated from a silicon-on-insulator wafer, a glass wafer, a commercially available piezoelectric stack actuator, and Macor ceramic encapsulation that has overall dimensions of 1.5 x 1.5 x 1.1 cm 3 . A piezoresistive pressure sensor and a thin-film Pt resistance temperature detector are integrated on the silicon die. The assembly process allows the implementation of normally open, partially open, and normally closed valves. At room temperature, gas flow modulation from 200 to 0 mL/min is achieved from 0- to 40-V actuation. Flow modulation at various temperatures from room temperature to 205 K is also reported. The pressure sensor has sensitivity of 356 ppm/kPa at room temperature, with temperature coefficient of sensitivity of -6507 ppm/K. The temperature sensor has sensitivity of 0.29 %/K. The valve and the sensors are tested across a wide range of temperatures, and the effect of temperature on performance is discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2009.2021097</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2009-08, Vol.18 (4), p.868-877
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_912365725
source IEEE Electronic Library (IEL)
subjects Actuation
Applied sciences
Cooling
Cooling systems
cryogenic
Detectors
Exact sciences and technology
Fabrication
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mechanical engineering. Machine design
Mechanical instruments, equipment and techniques
microelectromechanical systems (MEMS)
Micromechanical devices and systems
Microvalves
Modulation
Physics
piezoelectric
piezoresistive pressure sensor
Precision engineering, watch making
Pressure sensors
resistance temperature detector (RTD)
Sensors
Silicon on insulator technology
Temperature
Temperature control
Temperature distribution
Temperature sensors
Testing
Thermal stability
Valves
Wafers
title A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Microvalve%20With%20Integrated%20Sensors%20and%20Customizable%20Normal%20State%20for%20Low-Temperature%20Operation&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Park,%20J.M.&rft.date=2009-08-01&rft.volume=18&rft.issue=4&rft.spage=868&rft.epage=877&rft.pages=868-877&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2009.2021097&rft_dat=%3Cproquest_RIE%3E1022907046%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912365725&rft_id=info:pmid/&rft_ieee_id=5067289&rfr_iscdi=true