Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core
The sulfur and oxygen isotopic composition of sulfate in polar ice cores provides information about atmospheric sulfate sources and formation pathways, which have been impacted regionally by human activity over the past several centuries. We present decadal scale mean ice core measurements of Δ17O,...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2010-09, Vol.115 (D18), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D18 |
container_start_page | |
container_title | Journal of Geophysical Research: Atmospheres |
container_volume | 115 |
creator | Kunasek, S. A. Alexander, B. Steig, E. J. Sofen, E. D. Jackson, T. L. Thiemens, M. H. McConnell, J. R. Gleason, D. J. Amos, H. M. |
description | The sulfur and oxygen isotopic composition of sulfate in polar ice cores provides information about atmospheric sulfate sources and formation pathways, which have been impacted regionally by human activity over the past several centuries. We present decadal scale mean ice core measurements of Δ17O, δ34S, Δ33S, and Δ36S of sulfate over the past 230 years from the West Antarctic Ice Sheet (WAIS) Divide deep ice core drill site (WDC05‐A). The low mean δ34S of non–sea‐salt sulfate at WAIS Divide (6.0 ± 0.2‰) relative to East Antarctic coastal and plateau sites may reflect a combination of stronger influence of volcanogenic and/or stratospheric sulfate with low δ34S and the influence of frost flowers on the sea‐salt sulfate‐to‐sodium ratio. Δ33S and Δ36S measurements are all within analytical uncertainty of zero but do not contradict a contribution of stratospheric sources to background sulfate deposition at WAIS Divide. Δ17O of non–sea‐salt sulfate shows a small but significant increase between the late 1700s (1.8‰ ± 0.2‰) and late 1800s (2.6‰ ± 0.2‰), but the influence of stratospheric scale volcanic events on Δ17O in the early 1800s remains uncertain. An isotope mass balance model shows that the lack of change in Δ17O of non–sea‐salt sulfate from the mid‐1800s to early 2000s (2.4‰–2.6‰ ± 0.2‰) is consistent with previous atmospheric chemistry model estimates indicating preindustrial to industrial increases in O3 as high as 50% and decreases in OH of 20% in the southern polar troposphere, as long as H2O2 concentrations also increase by over 50%. |
doi_str_mv | 10.1029/2010JD013846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_912312161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545389691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5018-c084a9ebd3553b9482206bc486f6f58b5608f0d5095053f558f95892c9050bea3</originalsourceid><addsrcrecordid>eNp9kctOWzEQhi0EEhFl1wewkNhx2vE1PksubWiEQL0p2Vk-jg2G5DjYJyXnCfradZoIscKbWfj__pn5B6GPBD4RoPVnCgTGV0CY4nIPDSgRsqIU6D4aAOGqAkqHh-g450cojwvJgQzQ35-ruTedwzmuknUZm3aG4zrMTBdii-2DW4TcpR7HPy7h7sHhpckdpgxw70zK2Ke4wLmYrNKO7e9di0OOXVwWv-j__25ahBYbPHEFP287k2wXLA7WYRuT-4AOvJlnd7yrR-j31y-_Lq-rm7vRt8vzm8oIIKqyoLipXTNjQrCm5qpsKBvLlfTSC9UICcrDTEAtQDAvhPK1UDW1NQhonGFH6GTru0zxeVVm0Y9l8ba01DWhjFAiSRGdbUU2xZyT83qZwsKkXhPQm7D127CL_HTnabI1c59Ma0N-ZShjvOSlio5tdS9h7vp3PfV49OOKSCY3VLWlyh3c-pUy6UnLIRsKPbkdaTblkws6_a4J-wfttJuG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912312161</pqid></control><display><type>article</type><title>Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kunasek, S. A. ; Alexander, B. ; Steig, E. J. ; Sofen, E. D. ; Jackson, T. L. ; Thiemens, M. H. ; McConnell, J. R. ; Gleason, D. J. ; Amos, H. M.</creator><creatorcontrib>Kunasek, S. A. ; Alexander, B. ; Steig, E. J. ; Sofen, E. D. ; Jackson, T. L. ; Thiemens, M. H. ; McConnell, J. R. ; Gleason, D. J. ; Amos, H. M.</creatorcontrib><description>The sulfur and oxygen isotopic composition of sulfate in polar ice cores provides information about atmospheric sulfate sources and formation pathways, which have been impacted regionally by human activity over the past several centuries. We present decadal scale mean ice core measurements of Δ17O, δ34S, Δ33S, and Δ36S of sulfate over the past 230 years from the West Antarctic Ice Sheet (WAIS) Divide deep ice core drill site (WDC05‐A). The low mean δ34S of non–sea‐salt sulfate at WAIS Divide (6.0 ± 0.2‰) relative to East Antarctic coastal and plateau sites may reflect a combination of stronger influence of volcanogenic and/or stratospheric sulfate with low δ34S and the influence of frost flowers on the sea‐salt sulfate‐to‐sodium ratio. Δ33S and Δ36S measurements are all within analytical uncertainty of zero but do not contradict a contribution of stratospheric sources to background sulfate deposition at WAIS Divide. Δ17O of non–sea‐salt sulfate shows a small but significant increase between the late 1700s (1.8‰ ± 0.2‰) and late 1800s (2.6‰ ± 0.2‰), but the influence of stratospheric scale volcanic events on Δ17O in the early 1800s remains uncertain. An isotope mass balance model shows that the lack of change in Δ17O of non–sea‐salt sulfate from the mid‐1800s to early 2000s (2.4‰–2.6‰ ± 0.2‰) is consistent with previous atmospheric chemistry model estimates indicating preindustrial to industrial increases in O3 as high as 50% and decreases in OH of 20% in the southern polar troposphere, as long as H2O2 concentrations also increase by over 50%.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD013846</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Antarctica ; Atmosphere ; Atmospheric chemistry ; Atmospheric sciences ; Climate change ; Core drilling ; Cryosphere ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemistry ; Geophysics ; Hydrogen peroxide ; Ice ; isotope ; Isotopes ; Oxygen isotopes ; Paleoclimate science ; Salts ; sulfate ; Sulfates ; Sulfur ; Troposphere</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2010-09, Vol.115 (D18), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5018-c084a9ebd3553b9482206bc486f6f58b5608f0d5095053f558f95892c9050bea3</citedby><cites>FETCH-LOGICAL-a5018-c084a9ebd3553b9482206bc486f6f58b5608f0d5095053f558f95892c9050bea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD013846$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD013846$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23342308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunasek, S. A.</creatorcontrib><creatorcontrib>Alexander, B.</creatorcontrib><creatorcontrib>Steig, E. J.</creatorcontrib><creatorcontrib>Sofen, E. D.</creatorcontrib><creatorcontrib>Jackson, T. L.</creatorcontrib><creatorcontrib>Thiemens, M. H.</creatorcontrib><creatorcontrib>McConnell, J. R.</creatorcontrib><creatorcontrib>Gleason, D. J.</creatorcontrib><creatorcontrib>Amos, H. M.</creatorcontrib><title>Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>The sulfur and oxygen isotopic composition of sulfate in polar ice cores provides information about atmospheric sulfate sources and formation pathways, which have been impacted regionally by human activity over the past several centuries. We present decadal scale mean ice core measurements of Δ17O, δ34S, Δ33S, and Δ36S of sulfate over the past 230 years from the West Antarctic Ice Sheet (WAIS) Divide deep ice core drill site (WDC05‐A). The low mean δ34S of non–sea‐salt sulfate at WAIS Divide (6.0 ± 0.2‰) relative to East Antarctic coastal and plateau sites may reflect a combination of stronger influence of volcanogenic and/or stratospheric sulfate with low δ34S and the influence of frost flowers on the sea‐salt sulfate‐to‐sodium ratio. Δ33S and Δ36S measurements are all within analytical uncertainty of zero but do not contradict a contribution of stratospheric sources to background sulfate deposition at WAIS Divide. Δ17O of non–sea‐salt sulfate shows a small but significant increase between the late 1700s (1.8‰ ± 0.2‰) and late 1800s (2.6‰ ± 0.2‰), but the influence of stratospheric scale volcanic events on Δ17O in the early 1800s remains uncertain. An isotope mass balance model shows that the lack of change in Δ17O of non–sea‐salt sulfate from the mid‐1800s to early 2000s (2.4‰–2.6‰ ± 0.2‰) is consistent with previous atmospheric chemistry model estimates indicating preindustrial to industrial increases in O3 as high as 50% and decreases in OH of 20% in the southern polar troposphere, as long as H2O2 concentrations also increase by over 50%.</description><subject>Antarctica</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric sciences</subject><subject>Climate change</subject><subject>Core drilling</subject><subject>Cryosphere</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Geophysics</subject><subject>Hydrogen peroxide</subject><subject>Ice</subject><subject>isotope</subject><subject>Isotopes</subject><subject>Oxygen isotopes</subject><subject>Paleoclimate science</subject><subject>Salts</subject><subject>sulfate</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Troposphere</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctOWzEQhi0EEhFl1wewkNhx2vE1PksubWiEQL0p2Vk-jg2G5DjYJyXnCfradZoIscKbWfj__pn5B6GPBD4RoPVnCgTGV0CY4nIPDSgRsqIU6D4aAOGqAkqHh-g450cojwvJgQzQ35-ruTedwzmuknUZm3aG4zrMTBdii-2DW4TcpR7HPy7h7sHhpckdpgxw70zK2Ke4wLmYrNKO7e9di0OOXVwWv-j__25ahBYbPHEFP287k2wXLA7WYRuT-4AOvJlnd7yrR-j31y-_Lq-rm7vRt8vzm8oIIKqyoLipXTNjQrCm5qpsKBvLlfTSC9UICcrDTEAtQDAvhPK1UDW1NQhonGFH6GTru0zxeVVm0Y9l8ba01DWhjFAiSRGdbUU2xZyT83qZwsKkXhPQm7D127CL_HTnabI1c59Ma0N-ZShjvOSlio5tdS9h7vp3PfV49OOKSCY3VLWlyh3c-pUy6UnLIRsKPbkdaTblkws6_a4J-wfttJuG</recordid><startdate>20100927</startdate><enddate>20100927</enddate><creator>Kunasek, S. A.</creator><creator>Alexander, B.</creator><creator>Steig, E. J.</creator><creator>Sofen, E. D.</creator><creator>Jackson, T. L.</creator><creator>Thiemens, M. H.</creator><creator>McConnell, J. R.</creator><creator>Gleason, D. J.</creator><creator>Amos, H. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100927</creationdate><title>Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core</title><author>Kunasek, S. A. ; Alexander, B. ; Steig, E. J. ; Sofen, E. D. ; Jackson, T. L. ; Thiemens, M. H. ; McConnell, J. R. ; Gleason, D. J. ; Amos, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5018-c084a9ebd3553b9482206bc486f6f58b5608f0d5095053f558f95892c9050bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antarctica</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric sciences</topic><topic>Climate change</topic><topic>Core drilling</topic><topic>Cryosphere</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Geophysics</topic><topic>Hydrogen peroxide</topic><topic>Ice</topic><topic>isotope</topic><topic>Isotopes</topic><topic>Oxygen isotopes</topic><topic>Paleoclimate science</topic><topic>Salts</topic><topic>sulfate</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunasek, S. A.</creatorcontrib><creatorcontrib>Alexander, B.</creatorcontrib><creatorcontrib>Steig, E. J.</creatorcontrib><creatorcontrib>Sofen, E. D.</creatorcontrib><creatorcontrib>Jackson, T. L.</creatorcontrib><creatorcontrib>Thiemens, M. H.</creatorcontrib><creatorcontrib>McConnell, J. R.</creatorcontrib><creatorcontrib>Gleason, D. J.</creatorcontrib><creatorcontrib>Amos, H. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunasek, S. A.</au><au>Alexander, B.</au><au>Steig, E. J.</au><au>Sofen, E. D.</au><au>Jackson, T. L.</au><au>Thiemens, M. H.</au><au>McConnell, J. R.</au><au>Gleason, D. J.</au><au>Amos, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-09-27</date><risdate>2010</risdate><volume>115</volume><issue>D18</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>The sulfur and oxygen isotopic composition of sulfate in polar ice cores provides information about atmospheric sulfate sources and formation pathways, which have been impacted regionally by human activity over the past several centuries. We present decadal scale mean ice core measurements of Δ17O, δ34S, Δ33S, and Δ36S of sulfate over the past 230 years from the West Antarctic Ice Sheet (WAIS) Divide deep ice core drill site (WDC05‐A). The low mean δ34S of non–sea‐salt sulfate at WAIS Divide (6.0 ± 0.2‰) relative to East Antarctic coastal and plateau sites may reflect a combination of stronger influence of volcanogenic and/or stratospheric sulfate with low δ34S and the influence of frost flowers on the sea‐salt sulfate‐to‐sodium ratio. Δ33S and Δ36S measurements are all within analytical uncertainty of zero but do not contradict a contribution of stratospheric sources to background sulfate deposition at WAIS Divide. Δ17O of non–sea‐salt sulfate shows a small but significant increase between the late 1700s (1.8‰ ± 0.2‰) and late 1800s (2.6‰ ± 0.2‰), but the influence of stratospheric scale volcanic events on Δ17O in the early 1800s remains uncertain. An isotope mass balance model shows that the lack of change in Δ17O of non–sea‐salt sulfate from the mid‐1800s to early 2000s (2.4‰–2.6‰ ± 0.2‰) is consistent with previous atmospheric chemistry model estimates indicating preindustrial to industrial increases in O3 as high as 50% and decreases in OH of 20% in the southern polar troposphere, as long as H2O2 concentrations also increase by over 50%.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD013846</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Atmospheres, 2010-09, Vol.115 (D18), p.n/a |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_912312161 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Antarctica Atmosphere Atmospheric chemistry Atmospheric sciences Climate change Core drilling Cryosphere Earth Earth sciences Earth, ocean, space Exact sciences and technology Geochemistry Geophysics Hydrogen peroxide Ice isotope Isotopes Oxygen isotopes Paleoclimate science Salts sulfate Sulfates Sulfur Troposphere |
title | Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfate%20sources%20and%20oxidation%20chemistry%20over%20the%20past%20230%20years%20from%20sulfur%20and%20oxygen%20isotopes%20of%20sulfate%20in%20a%20West%20Antarctic%20ice%20core&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Kunasek,%20S.%20A.&rft.date=2010-09-27&rft.volume=115&rft.issue=D18&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD013846&rft_dat=%3Cproquest_cross%3E2545389691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912312161&rft_id=info:pmid/&rfr_iscdi=true |