The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design

A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2008-06, Vol.18 (2), p.904-907
Hauptverfasser: Schild, T., Aubert, G., Berriaud, C., Bredy, P., Juster, F.P., Meuris, C., Nunio, F., Quettier, L., Rey, J.M., Vedrine, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 2
container_start_page 904
container_title IEEE transactions on applied superconductivity
container_volume 18
creator Schild, T.
Aubert, G.
Berriaud, C.
Bredy, P.
Juster, F.P.
Meuris, C.
Nunio, F.
Quettier, L.
Rey, J.M.
Vedrine, P.
description A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program, Iseult, focus on high field MRI. The conservative MRI magnet design principles are not readily applicable and other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryoplant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryostability. The magnet will be actively shielded to fulfill the specifications regarding the stray field.
doi_str_mv 10.1109/TASC.2008.921264
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912298740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4520254</ieee_id><sourcerecordid>2545272031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6a3bfb49c7cff1e861d9dc29a452349ff18efa62a2ef7a99bf4e8e478a9a3f373</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFbvgpcgqKe0-5nsHmv9CrQIGvG4bLezbUqa1Gxy6L83IaUHD55mmHnmhXkQuiZ4RAhW43TyOR1RjOVIUUIjfoIGRAgZUkHEadtjQUJJKTtHF95vMCZccjFAIl1DkHho8nqcFM3W2OB7XeYQPJbLfUDIKA7SYP6RBHOzKqAOnsBnq-ISnTmTe7g61CH6enlOp2_h7P01mU5moWWS1WFk2MItuLKxdY6AjMhSLS1VhgvKuGpnEpyJqKHgYqPUwnGQwGNplGGOxWyIHvrcXVX-NOBrvc28hTw3BZSN11LiiEeqfWuI7v8lWcREHPMu8vYPuCmbqmi_0IpQqmTMcQvhHrJV6X0FTu-qbGuqvSZYd7p1p1t3unWvuz25O-Qab03uKlPYzB_vKOaSScJa7qbnMgA4rlshmArOfgErVITX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912298740</pqid></control><display><type>article</type><title>The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design</title><source>IEEE Electronic Library (IEL)</source><creator>Schild, T. ; Aubert, G. ; Berriaud, C. ; Bredy, P. ; Juster, F.P. ; Meuris, C. ; Nunio, F. ; Quettier, L. ; Rey, J.M. ; Vedrine, P.</creator><creatorcontrib>Schild, T. ; Aubert, G. ; Berriaud, C. ; Bredy, P. ; Juster, F.P. ; Meuris, C. ; Nunio, F. ; Quettier, L. ; Rey, J.M. ; Vedrine, P.</creatorcontrib><description>A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&amp;D program, Iseult, focus on high field MRI. The conservative MRI magnet design principles are not readily applicable and other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryoplant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryostability. The magnet will be actively shielded to fulfill the specifications regarding the stray field.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2008.921264</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Apertures ; Applied sciences ; Boring ; Coils ; Conductors ; Conductors (devices) ; Criteria ; Design engineering ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Field strength ; High field magnet ; Imaging ; Imaging devices ; Life sciences ; Magnetic resonance imaging ; Neuroscience ; Niobium compounds ; niobium titanium ; Physics ; Power electronics, power supplies ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Titanium compounds ; Tokamak devices ; Tokamaks ; Various equipment and components ; whole body magnet ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2008-06, Vol.18 (2), p.904-907</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6a3bfb49c7cff1e861d9dc29a452349ff18efa62a2ef7a99bf4e8e478a9a3f373</citedby><cites>FETCH-LOGICAL-c383t-6a3bfb49c7cff1e861d9dc29a452349ff18efa62a2ef7a99bf4e8e478a9a3f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4520254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,798,23939,23940,25149,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4520254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20483813$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schild, T.</creatorcontrib><creatorcontrib>Aubert, G.</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Bredy, P.</creatorcontrib><creatorcontrib>Juster, F.P.</creatorcontrib><creatorcontrib>Meuris, C.</creatorcontrib><creatorcontrib>Nunio, F.</creatorcontrib><creatorcontrib>Quettier, L.</creatorcontrib><creatorcontrib>Rey, J.M.</creatorcontrib><creatorcontrib>Vedrine, P.</creatorcontrib><title>The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&amp;D program, Iseult, focus on high field MRI. The conservative MRI magnet design principles are not readily applicable and other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryoplant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryostability. The magnet will be actively shielded to fulfill the specifications regarding the stray field.</description><subject>Apertures</subject><subject>Applied sciences</subject><subject>Boring</subject><subject>Coils</subject><subject>Conductors</subject><subject>Conductors (devices)</subject><subject>Criteria</subject><subject>Design engineering</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Field strength</subject><subject>High field magnet</subject><subject>Imaging</subject><subject>Imaging devices</subject><subject>Life sciences</subject><subject>Magnetic resonance imaging</subject><subject>Neuroscience</subject><subject>Niobium compounds</subject><subject>niobium titanium</subject><subject>Physics</subject><subject>Power electronics, power supplies</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Titanium compounds</subject><subject>Tokamak devices</subject><subject>Tokamaks</subject><subject>Various equipment and components</subject><subject>whole body magnet</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFbvgpcgqKe0-5nsHmv9CrQIGvG4bLezbUqa1Gxy6L83IaUHD55mmHnmhXkQuiZ4RAhW43TyOR1RjOVIUUIjfoIGRAgZUkHEadtjQUJJKTtHF95vMCZccjFAIl1DkHho8nqcFM3W2OB7XeYQPJbLfUDIKA7SYP6RBHOzKqAOnsBnq-ISnTmTe7g61CH6enlOp2_h7P01mU5moWWS1WFk2MItuLKxdY6AjMhSLS1VhgvKuGpnEpyJqKHgYqPUwnGQwGNplGGOxWyIHvrcXVX-NOBrvc28hTw3BZSN11LiiEeqfWuI7v8lWcREHPMu8vYPuCmbqmi_0IpQqmTMcQvhHrJV6X0FTu-qbGuqvSZYd7p1p1t3unWvuz25O-Qab03uKlPYzB_vKOaSScJa7qbnMgA4rlshmArOfgErVITX</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Schild, T.</creator><creator>Aubert, G.</creator><creator>Berriaud, C.</creator><creator>Bredy, P.</creator><creator>Juster, F.P.</creator><creator>Meuris, C.</creator><creator>Nunio, F.</creator><creator>Quettier, L.</creator><creator>Rey, J.M.</creator><creator>Vedrine, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080601</creationdate><title>The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design</title><author>Schild, T. ; Aubert, G. ; Berriaud, C. ; Bredy, P. ; Juster, F.P. ; Meuris, C. ; Nunio, F. ; Quettier, L. ; Rey, J.M. ; Vedrine, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6a3bfb49c7cff1e861d9dc29a452349ff18efa62a2ef7a99bf4e8e478a9a3f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Apertures</topic><topic>Applied sciences</topic><topic>Boring</topic><topic>Coils</topic><topic>Conductors</topic><topic>Conductors (devices)</topic><topic>Criteria</topic><topic>Design engineering</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Field strength</topic><topic>High field magnet</topic><topic>Imaging</topic><topic>Imaging devices</topic><topic>Life sciences</topic><topic>Magnetic resonance imaging</topic><topic>Neuroscience</topic><topic>Niobium compounds</topic><topic>niobium titanium</topic><topic>Physics</topic><topic>Power electronics, power supplies</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Titanium compounds</topic><topic>Tokamak devices</topic><topic>Tokamaks</topic><topic>Various equipment and components</topic><topic>whole body magnet</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schild, T.</creatorcontrib><creatorcontrib>Aubert, G.</creatorcontrib><creatorcontrib>Berriaud, C.</creatorcontrib><creatorcontrib>Bredy, P.</creatorcontrib><creatorcontrib>Juster, F.P.</creatorcontrib><creatorcontrib>Meuris, C.</creatorcontrib><creatorcontrib>Nunio, F.</creatorcontrib><creatorcontrib>Quettier, L.</creatorcontrib><creatorcontrib>Rey, J.M.</creatorcontrib><creatorcontrib>Vedrine, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schild, T.</au><au>Aubert, G.</au><au>Berriaud, C.</au><au>Bredy, P.</au><au>Juster, F.P.</au><au>Meuris, C.</au><au>Nunio, F.</au><au>Quettier, L.</au><au>Rey, J.M.</au><au>Vedrine, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>904</spage><epage>907</epage><pages>904-907</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&amp;D program, Iseult, focus on high field MRI. The conservative MRI magnet design principles are not readily applicable and other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryoplant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryostability. The magnet will be actively shielded to fulfill the specifications regarding the stray field.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2008.921264</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2008-06, Vol.18 (2), p.904-907
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_912298740
source IEEE Electronic Library (IEL)
subjects Apertures
Applied sciences
Boring
Coils
Conductors
Conductors (devices)
Criteria
Design engineering
Electrical engineering. Electrical power engineering
Electromagnets
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Field strength
High field magnet
Imaging
Imaging devices
Life sciences
Magnetic resonance imaging
Neuroscience
Niobium compounds
niobium titanium
Physics
Power electronics, power supplies
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Titanium compounds
Tokamak devices
Tokamaks
Various equipment and components
whole body magnet
Winding
title The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Iseult/Inumac%20Whole%20Body%2011.7%20T%20MRI%20Magnet%20Design&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Schild,%20T.&rft.date=2008-06-01&rft.volume=18&rft.issue=2&rft.spage=904&rft.epage=907&rft.pages=904-907&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2008.921264&rft_dat=%3Cproquest_RIE%3E2545272031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912298740&rft_id=info:pmid/&rft_ieee_id=4520254&rfr_iscdi=true