Group Behavior Recognition for Gesture Analysis

This paper analyzes the movements of the human body limbs (hands, feet and head) and center of gravity in order to detect and analyze simple actions such as walking and running. We propose a novel vision of the human body, by considering the limbs as cooperative agents that form a hierarchy of coope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2008-02, Vol.18 (2), p.211-222
Hauptverfasser: Kosta, G., Benoit, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 211
container_title IEEE transactions on circuits and systems for video technology
container_volume 18
creator Kosta, G.
Benoit, M.
description This paper analyzes the movements of the human body limbs (hands, feet and head) and center of gravity in order to detect and analyze simple actions such as walking and running. We propose a novel vision of the human body, by considering the limbs as cooperative agents that form a hierarchy of cooperative teams: the whole body. The movements are analyzed at individual level and at team level using a modular hierarchical structure. Knowledge of the high-level team actions (such as ldquowalkingrdquo) improves the pertinence of our predictions on the low-level individual actions (foot is moving back and forth) and allows us to compensate for missing or noisy data produced by the feature extraction system. In terms of group behavior recognition, we propose a novel framework for online probabilistic plan recognition in cooperative multiagent systems: the Multiagent Hidden Markov mEmory Model (M-AHMEM), which is a dynamic Bayesian network. Experiments on an existing video database using different models of the human body show the feasibility of the approach.
doi_str_mv 10.1109/TCSVT.2007.913968
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912284296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4400031</ieee_id><sourcerecordid>875091934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-36f7b9cd47399eaba566b2ec5e477a3b05fe42e7a21664bed22ed182523720083</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gHgJgnpKuzu7m909atEqFAStXpdNOtGUNKm7jdB_b2JKDx48zQzzvWHeI-Sc0RFj1Iznk9f3-QgoVSPDuEn0ARkwKXUMQOVh21PJYg1MHpOTEJaUMqGFGpDx1NfNOrrDT_dd1D56waz-qIpNUVdR3s5TDJvGY3RbuXIbinBKjnJXBjzb1SF5e7ifTx7j2fP0aXI7izOu5SbmSa5Sky2E4sagS51MkhQwkyiUcjylMkcBqBywJBEpLgBwwTRI4Ko1ofmQ3PR3177-aton7KoIGZalq7BugtVKUsMMFy15_S_JhTAqgaQFL_-Ay7rxra9gDQPQAkwHsR7KfB2Cx9yufbFyfmsZtV3S9jdp2yVt-6RbzdXusAuZK3PvqqwIeyFQppWGjrvouQIR92shKKWc8R83RoTT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912284296</pqid></control><display><type>article</type><title>Group Behavior Recognition for Gesture Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Kosta, G. ; Benoit, M.</creator><creatorcontrib>Kosta, G. ; Benoit, M.</creatorcontrib><description>This paper analyzes the movements of the human body limbs (hands, feet and head) and center of gravity in order to detect and analyze simple actions such as walking and running. We propose a novel vision of the human body, by considering the limbs as cooperative agents that form a hierarchy of cooperative teams: the whole body. The movements are analyzed at individual level and at team level using a modular hierarchical structure. Knowledge of the high-level team actions (such as ldquowalkingrdquo) improves the pertinence of our predictions on the low-level individual actions (foot is moving back and forth) and allows us to compensate for missing or noisy data produced by the feature extraction system. In terms of group behavior recognition, we propose a novel framework for online probabilistic plan recognition in cooperative multiagent systems: the Multiagent Hidden Markov mEmory Model (M-AHMEM), which is a dynamic Bayesian network. Experiments on an existing video database using different models of the human body show the feasibility of the approach.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2007.913968</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Bayesian network ; Biological system modeling ; Detection, estimation, filtering, equalization, prediction ; dynamic ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Feature extraction ; Foot ; Gravity ; group behavior ; Hidden Markov models ; human action ; Human body ; Humans ; Information, signal and communications theory ; Legged locomotion ; Limbs ; Mathematical models ; Miscellaneous ; Movements ; Multiagent systems ; particle filter ; plan recognition ; Rao-Blackwell ; Recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; Spatial databases ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2008-02, Vol.18 (2), p.211-222</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-36f7b9cd47399eaba566b2ec5e477a3b05fe42e7a21664bed22ed182523720083</citedby><cites>FETCH-LOGICAL-c385t-36f7b9cd47399eaba566b2ec5e477a3b05fe42e7a21664bed22ed182523720083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4400031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4400031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20187828$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosta, G.</creatorcontrib><creatorcontrib>Benoit, M.</creatorcontrib><title>Group Behavior Recognition for Gesture Analysis</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This paper analyzes the movements of the human body limbs (hands, feet and head) and center of gravity in order to detect and analyze simple actions such as walking and running. We propose a novel vision of the human body, by considering the limbs as cooperative agents that form a hierarchy of cooperative teams: the whole body. The movements are analyzed at individual level and at team level using a modular hierarchical structure. Knowledge of the high-level team actions (such as ldquowalkingrdquo) improves the pertinence of our predictions on the low-level individual actions (foot is moving back and forth) and allows us to compensate for missing or noisy data produced by the feature extraction system. In terms of group behavior recognition, we propose a novel framework for online probabilistic plan recognition in cooperative multiagent systems: the Multiagent Hidden Markov mEmory Model (M-AHMEM), which is a dynamic Bayesian network. Experiments on an existing video database using different models of the human body show the feasibility of the approach.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Bayesian network</subject><subject>Biological system modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>dynamic</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Foot</subject><subject>Gravity</subject><subject>group behavior</subject><subject>Hidden Markov models</subject><subject>human action</subject><subject>Human body</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Legged locomotion</subject><subject>Limbs</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Movements</subject><subject>Multiagent systems</subject><subject>particle filter</subject><subject>plan recognition</subject><subject>Rao-Blackwell</subject><subject>Recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Spatial databases</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEFLw0AQhRdRsFZ_gHgJgnpKuzu7m909atEqFAStXpdNOtGUNKm7jdB_b2JKDx48zQzzvWHeI-Sc0RFj1Iznk9f3-QgoVSPDuEn0ARkwKXUMQOVh21PJYg1MHpOTEJaUMqGFGpDx1NfNOrrDT_dd1D56waz-qIpNUVdR3s5TDJvGY3RbuXIbinBKjnJXBjzb1SF5e7ifTx7j2fP0aXI7izOu5SbmSa5Sky2E4sagS51MkhQwkyiUcjylMkcBqBywJBEpLgBwwTRI4Ko1ofmQ3PR3177-aton7KoIGZalq7BugtVKUsMMFy15_S_JhTAqgaQFL_-Ay7rxra9gDQPQAkwHsR7KfB2Cx9yufbFyfmsZtV3S9jdp2yVt-6RbzdXusAuZK3PvqqwIeyFQppWGjrvouQIR92shKKWc8R83RoTT</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Kosta, G.</creator><creator>Benoit, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080201</creationdate><title>Group Behavior Recognition for Gesture Analysis</title><author>Kosta, G. ; Benoit, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-36f7b9cd47399eaba566b2ec5e477a3b05fe42e7a21664bed22ed182523720083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Bayesian network</topic><topic>Biological system modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>dynamic</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Foot</topic><topic>Gravity</topic><topic>group behavior</topic><topic>Hidden Markov models</topic><topic>human action</topic><topic>Human body</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Legged locomotion</topic><topic>Limbs</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Movements</topic><topic>Multiagent systems</topic><topic>particle filter</topic><topic>plan recognition</topic><topic>Rao-Blackwell</topic><topic>Recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Spatial databases</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosta, G.</creatorcontrib><creatorcontrib>Benoit, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kosta, G.</au><au>Benoit, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Behavior Recognition for Gesture Analysis</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>211</spage><epage>222</epage><pages>211-222</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This paper analyzes the movements of the human body limbs (hands, feet and head) and center of gravity in order to detect and analyze simple actions such as walking and running. We propose a novel vision of the human body, by considering the limbs as cooperative agents that form a hierarchy of cooperative teams: the whole body. The movements are analyzed at individual level and at team level using a modular hierarchical structure. Knowledge of the high-level team actions (such as ldquowalkingrdquo) improves the pertinence of our predictions on the low-level individual actions (foot is moving back and forth) and allows us to compensate for missing or noisy data produced by the feature extraction system. In terms of group behavior recognition, we propose a novel framework for online probabilistic plan recognition in cooperative multiagent systems: the Multiagent Hidden Markov mEmory Model (M-AHMEM), which is a dynamic Bayesian network. Experiments on an existing video database using different models of the human body show the feasibility of the approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2007.913968</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2008-02, Vol.18 (2), p.211-222
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_912284296
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bayesian methods
Bayesian network
Biological system modeling
Detection, estimation, filtering, equalization, prediction
dynamic
Dynamical systems
Dynamics
Exact sciences and technology
Feature extraction
Foot
Gravity
group behavior
Hidden Markov models
human action
Human body
Humans
Information, signal and communications theory
Legged locomotion
Limbs
Mathematical models
Miscellaneous
Movements
Multiagent systems
particle filter
plan recognition
Rao-Blackwell
Recognition
Signal and communications theory
Signal processing
Signal, noise
Spatial databases
Studies
Telecommunications and information theory
title Group Behavior Recognition for Gesture Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Behavior%20Recognition%20for%20Gesture%20Analysis&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Kosta,%20G.&rft.date=2008-02-01&rft.volume=18&rft.issue=2&rft.spage=211&rft.epage=222&rft.pages=211-222&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2007.913968&rft_dat=%3Cproquest_RIE%3E875091934%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912284296&rft_id=info:pmid/&rft_ieee_id=4400031&rfr_iscdi=true