Mixed Hodge polynomials of character varieties: With an appendix by Nicholas M. Katz

We calculate the E -polynomials of certain twisted GL( n ,ℂ)-character varieties of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2008-12, Vol.174 (3), p.555-624
Hauptverfasser: Hausel, Tamás, Rodriguez-Villegas, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 3
container_start_page 555
container_title Inventiones mathematicae
container_volume 174
creator Hausel, Tamás
Rodriguez-Villegas, Fernando
description We calculate the E -polynomials of certain twisted GL( n ,ℂ)-character varieties of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL( n ,ℂ)-character variety. The calculation also leads to several conjectures about the cohomology of : an explicit conjecture for its mixed Hodge polynomial; a conjectured curious hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n =2.
doi_str_mv 10.1007/s00222-008-0142-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_912141226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544216851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182x-e668df58d918263ff88623c02c836df29310dd491eb8a5c1b5d0cc1c6b9ac6ee3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNviPXVmsk2ToxS1QsWLnkOaj7ql7dakle2_N2UFT56Gl_dj4GHsFmGEAJP7DEBEHEBxwJp4d8YGWAviSHpyzgbFBq41wiW7ynkFJSQmNGCj16YLvpq1fhmqXbs-bttNY9e5amPlPm2ybh9S9W1TE_ZNyNfsIhY33PzeIft4enyfzvj87fll-jDnDhV1PEipfBwrr4uUIkalJAkH5JSQPpIWCN7XGsNC2bHDxdiDc-jkQlsnQxBDdtfv7lL7dQh5b1btIW3LS6ORsEYqs0OGfcilNucUotmlZmPT0SCYExXTUzGFijlRMV3pUN_JJbtdhvQ3_H_pBwAvZG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912141226</pqid></control><display><type>article</type><title>Mixed Hodge polynomials of character varieties: With an appendix by Nicholas M. Katz</title><source>SpringerNature Journals</source><creator>Hausel, Tamás ; Rodriguez-Villegas, Fernando</creator><creatorcontrib>Hausel, Tamás ; Rodriguez-Villegas, Fernando</creatorcontrib><description>We calculate the E -polynomials of certain twisted GL( n ,ℂ)-character varieties of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL( n ,ℂ)-character variety. The calculation also leads to several conjectures about the cohomology of : an explicit conjecture for its mixed Hodge polynomial; a conjectured curious hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n =2.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-008-0142-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2008-12, Vol.174 (3), p.555-624</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182x-e668df58d918263ff88623c02c836df29310dd491eb8a5c1b5d0cc1c6b9ac6ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-008-0142-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-008-0142-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hausel, Tamás</creatorcontrib><creatorcontrib>Rodriguez-Villegas, Fernando</creatorcontrib><title>Mixed Hodge polynomials of character varieties: With an appendix by Nicholas M. Katz</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We calculate the E -polynomials of certain twisted GL( n ,ℂ)-character varieties of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL( n ,ℂ)-character variety. The calculation also leads to several conjectures about the cohomology of : an explicit conjecture for its mixed Hodge polynomial; a conjectured curious hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n =2.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNviPXVmsk2ToxS1QsWLnkOaj7ql7dakle2_N2UFT56Gl_dj4GHsFmGEAJP7DEBEHEBxwJp4d8YGWAviSHpyzgbFBq41wiW7ynkFJSQmNGCj16YLvpq1fhmqXbs-bttNY9e5amPlPm2ybh9S9W1TE_ZNyNfsIhY33PzeIft4enyfzvj87fll-jDnDhV1PEipfBwrr4uUIkalJAkH5JSQPpIWCN7XGsNC2bHDxdiDc-jkQlsnQxBDdtfv7lL7dQh5b1btIW3LS6ORsEYqs0OGfcilNucUotmlZmPT0SCYExXTUzGFijlRMV3pUN_JJbtdhvQ3_H_pBwAvZG8</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Hausel, Tamás</creator><creator>Rodriguez-Villegas, Fernando</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200812</creationdate><title>Mixed Hodge polynomials of character varieties</title><author>Hausel, Tamás ; Rodriguez-Villegas, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182x-e668df58d918263ff88623c02c836df29310dd491eb8a5c1b5d0cc1c6b9ac6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hausel, Tamás</creatorcontrib><creatorcontrib>Rodriguez-Villegas, Fernando</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hausel, Tamás</au><au>Rodriguez-Villegas, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Hodge polynomials of character varieties: With an appendix by Nicholas M. Katz</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2008-12</date><risdate>2008</risdate><volume>174</volume><issue>3</issue><spage>555</spage><epage>624</epage><pages>555-624</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We calculate the E -polynomials of certain twisted GL( n ,ℂ)-character varieties of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL( n ,ℂ)-character variety. The calculation also leads to several conjectures about the cohomology of : an explicit conjecture for its mixed Hodge polynomial; a conjectured curious hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n =2.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00222-008-0142-x</doi><tpages>70</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2008-12, Vol.174 (3), p.555-624
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_912141226
source SpringerNature Journals
subjects Mathematics
Mathematics and Statistics
title Mixed Hodge polynomials of character varieties: With an appendix by Nicholas M. Katz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Hodge%20polynomials%20of%20character%20varieties:%20With%20an%20appendix%20by%20Nicholas%20M.%20Katz&rft.jtitle=Inventiones%20mathematicae&rft.au=Hausel,%20Tam%C3%A1s&rft.date=2008-12&rft.volume=174&rft.issue=3&rft.spage=555&rft.epage=624&rft.pages=555-624&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-008-0142-x&rft_dat=%3Cproquest_cross%3E2544216851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912141226&rft_id=info:pmid/&rfr_iscdi=true