Analysis of spectroscopic radiation portal monitor data using principal components analysis
Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation so...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2006-06, Vol.53 (3), p.1418-1423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1423 |
---|---|
container_issue | 3 |
container_start_page | 1418 |
container_title | IEEE transactions on nuclear science |
container_volume | 53 |
creator | Runkle, R.C. Tardiff, M.F. Anderson, K.K. Carlson, D.K. Smith, L.E. |
description | Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types. |
doi_str_mv | 10.1109/TNS.2006.874883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912111821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1645055</ieee_id><sourcerecordid>889382958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</originalsourceid><addsrcrecordid>eNpdkbtLBDEQh4MoeD5qC5toY7VnHpvcpBTxBaKFZ2URctmsRvaSNckV_vfmWEGwGob55gczH0InlMwpJepy-fQyZ4TIOSxaAL6DZlQIaKhYwC6aEUKhUa1S--gg58_atoKIGXq7Cmb4zj7j2OM8OltSzDaO3uJkOm-KjwGPMRUz4HUMvsSEO1MM3mQf3vGYfLB-rEMb12MMLpSMzW_kEdrrzZDd8W89RK-3N8vr--bx-e7h-uqxsbyVpXEUJEhJWWeFk4qzjlFiamMla8nCglx1XArpesVI2wNYtuIGlDGs47wj_BCdTbkxF6-z9cXZDxtDqNdogAWXtDIXEzOm-LVxuei1z9YNgwkubnLFFAemBFTy_B_5GTepnpS1ooxSCmwbdzlBtr4rJ9fr-om1Sd-aEr3VoasOvdWhJx1143Ta8M65P1puNQj-Axrkhqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912111821</pqid></control><display><type>article</type><title>Analysis of spectroscopic radiation portal monitor data using principal components analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Runkle, R.C. ; Tardiff, M.F. ; Anderson, K.K. ; Carlson, D.K. ; Smith, L.E.</creator><creatorcontrib>Runkle, R.C. ; Tardiff, M.F. ; Anderson, K.K. ; Carlson, D.K. ; Smith, L.E. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2006.874883</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ALGORITHMS ; Anomalies ; Anomaly detection ; Borders ; CARGO ; DATA ANALYSIS ; ENTRY CONTROL SYSTEMS ; GAMMA DETECTION ; Gamma ray detection ; Gamma ray detectors ; gamma-ray spectral analysis ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Monitors ; multivariate statistics ; Nuclear measurements ; Nuisance ; Population (statistical) ; Portals ; Principal component analysis ; Principal components analysis ; Probability ; Radiation monitoring ; RADIATION MONITORS ; radiation portal monitoring ; SPECTRA ; Spectroscopy ; Studies ; Vehicle detection ; Vehicles</subject><ispartof>IEEE transactions on nuclear science, 2006-06, Vol.53 (3), p.1418-1423</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</citedby><cites>FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1645055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1645055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/887361$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Runkle, R.C.</creatorcontrib><creatorcontrib>Tardiff, M.F.</creatorcontrib><creatorcontrib>Anderson, K.K.</creatorcontrib><creatorcontrib>Carlson, D.K.</creatorcontrib><creatorcontrib>Smith, L.E.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Analysis of spectroscopic radiation portal monitor data using principal components analysis</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.</description><subject>ALGORITHMS</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Borders</subject><subject>CARGO</subject><subject>DATA ANALYSIS</subject><subject>ENTRY CONTROL SYSTEMS</subject><subject>GAMMA DETECTION</subject><subject>Gamma ray detection</subject><subject>Gamma ray detectors</subject><subject>gamma-ray spectral analysis</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Monitors</subject><subject>multivariate statistics</subject><subject>Nuclear measurements</subject><subject>Nuisance</subject><subject>Population (statistical)</subject><subject>Portals</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Probability</subject><subject>Radiation monitoring</subject><subject>RADIATION MONITORS</subject><subject>radiation portal monitoring</subject><subject>SPECTRA</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkbtLBDEQh4MoeD5qC5toY7VnHpvcpBTxBaKFZ2URctmsRvaSNckV_vfmWEGwGob55gczH0InlMwpJepy-fQyZ4TIOSxaAL6DZlQIaKhYwC6aEUKhUa1S--gg58_atoKIGXq7Cmb4zj7j2OM8OltSzDaO3uJkOm-KjwGPMRUz4HUMvsSEO1MM3mQf3vGYfLB-rEMb12MMLpSMzW_kEdrrzZDd8W89RK-3N8vr--bx-e7h-uqxsbyVpXEUJEhJWWeFk4qzjlFiamMla8nCglx1XArpesVI2wNYtuIGlDGs47wj_BCdTbkxF6-z9cXZDxtDqNdogAWXtDIXEzOm-LVxuei1z9YNgwkubnLFFAemBFTy_B_5GTepnpS1ooxSCmwbdzlBtr4rJ9fr-om1Sd-aEr3VoasOvdWhJx1143Ta8M65P1puNQj-Axrkhqs</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Runkle, R.C.</creator><creator>Tardiff, M.F.</creator><creator>Anderson, K.K.</creator><creator>Carlson, D.K.</creator><creator>Smith, L.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>20060601</creationdate><title>Analysis of spectroscopic radiation portal monitor data using principal components analysis</title><author>Runkle, R.C. ; Tardiff, M.F. ; Anderson, K.K. ; Carlson, D.K. ; Smith, L.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGORITHMS</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Borders</topic><topic>CARGO</topic><topic>DATA ANALYSIS</topic><topic>ENTRY CONTROL SYSTEMS</topic><topic>GAMMA DETECTION</topic><topic>Gamma ray detection</topic><topic>Gamma ray detectors</topic><topic>gamma-ray spectral analysis</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Monitors</topic><topic>multivariate statistics</topic><topic>Nuclear measurements</topic><topic>Nuisance</topic><topic>Population (statistical)</topic><topic>Portals</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Probability</topic><topic>Radiation monitoring</topic><topic>RADIATION MONITORS</topic><topic>radiation portal monitoring</topic><topic>SPECTRA</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runkle, R.C.</creatorcontrib><creatorcontrib>Tardiff, M.F.</creatorcontrib><creatorcontrib>Anderson, K.K.</creatorcontrib><creatorcontrib>Carlson, D.K.</creatorcontrib><creatorcontrib>Smith, L.E.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Runkle, R.C.</au><au>Tardiff, M.F.</au><au>Anderson, K.K.</au><au>Carlson, D.K.</au><au>Smith, L.E.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of spectroscopic radiation portal monitor data using principal components analysis</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>53</volume><issue>3</issue><spage>1418</spage><epage>1423</epage><pages>1418-1423</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2006.874883</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2006-06, Vol.53 (3), p.1418-1423 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_912111821 |
source | IEEE Electronic Library (IEL) |
subjects | ALGORITHMS Anomalies Anomaly detection Borders CARGO DATA ANALYSIS ENTRY CONTROL SYSTEMS GAMMA DETECTION Gamma ray detection Gamma ray detectors gamma-ray spectral analysis INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Monitors multivariate statistics Nuclear measurements Nuisance Population (statistical) Portals Principal component analysis Principal components analysis Probability Radiation monitoring RADIATION MONITORS radiation portal monitoring SPECTRA Spectroscopy Studies Vehicle detection Vehicles |
title | Analysis of spectroscopic radiation portal monitor data using principal components analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20spectroscopic%20radiation%20portal%20monitor%20data%20using%20principal%20components%20analysis&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Runkle,%20R.C.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2006-06-01&rft.volume=53&rft.issue=3&rft.spage=1418&rft.epage=1423&rft.pages=1418-1423&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2006.874883&rft_dat=%3Cproquest_RIE%3E889382958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912111821&rft_id=info:pmid/&rft_ieee_id=1645055&rfr_iscdi=true |