Analysis of spectroscopic radiation portal monitor data using principal components analysis

Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2006-06, Vol.53 (3), p.1418-1423
Hauptverfasser: Runkle, R.C., Tardiff, M.F., Anderson, K.K., Carlson, D.K., Smith, L.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1423
container_issue 3
container_start_page 1418
container_title IEEE transactions on nuclear science
container_volume 53
creator Runkle, R.C.
Tardiff, M.F.
Anderson, K.K.
Carlson, D.K.
Smith, L.E.
description Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.
doi_str_mv 10.1109/TNS.2006.874883
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912111821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1645055</ieee_id><sourcerecordid>889382958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</originalsourceid><addsrcrecordid>eNpdkbtLBDEQh4MoeD5qC5toY7VnHpvcpBTxBaKFZ2URctmsRvaSNckV_vfmWEGwGob55gczH0InlMwpJepy-fQyZ4TIOSxaAL6DZlQIaKhYwC6aEUKhUa1S--gg58_atoKIGXq7Cmb4zj7j2OM8OltSzDaO3uJkOm-KjwGPMRUz4HUMvsSEO1MM3mQf3vGYfLB-rEMb12MMLpSMzW_kEdrrzZDd8W89RK-3N8vr--bx-e7h-uqxsbyVpXEUJEhJWWeFk4qzjlFiamMla8nCglx1XArpesVI2wNYtuIGlDGs47wj_BCdTbkxF6-z9cXZDxtDqNdogAWXtDIXEzOm-LVxuei1z9YNgwkubnLFFAemBFTy_B_5GTepnpS1ooxSCmwbdzlBtr4rJ9fr-om1Sd-aEr3VoasOvdWhJx1143Ta8M65P1puNQj-Axrkhqs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912111821</pqid></control><display><type>article</type><title>Analysis of spectroscopic radiation portal monitor data using principal components analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Runkle, R.C. ; Tardiff, M.F. ; Anderson, K.K. ; Carlson, D.K. ; Smith, L.E.</creator><creatorcontrib>Runkle, R.C. ; Tardiff, M.F. ; Anderson, K.K. ; Carlson, D.K. ; Smith, L.E. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2006.874883</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ALGORITHMS ; Anomalies ; Anomaly detection ; Borders ; CARGO ; DATA ANALYSIS ; ENTRY CONTROL SYSTEMS ; GAMMA DETECTION ; Gamma ray detection ; Gamma ray detectors ; gamma-ray spectral analysis ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Monitors ; multivariate statistics ; Nuclear measurements ; Nuisance ; Population (statistical) ; Portals ; Principal component analysis ; Principal components analysis ; Probability ; Radiation monitoring ; RADIATION MONITORS ; radiation portal monitoring ; SPECTRA ; Spectroscopy ; Studies ; Vehicle detection ; Vehicles</subject><ispartof>IEEE transactions on nuclear science, 2006-06, Vol.53 (3), p.1418-1423</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</citedby><cites>FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1645055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1645055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/887361$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Runkle, R.C.</creatorcontrib><creatorcontrib>Tardiff, M.F.</creatorcontrib><creatorcontrib>Anderson, K.K.</creatorcontrib><creatorcontrib>Carlson, D.K.</creatorcontrib><creatorcontrib>Smith, L.E.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Analysis of spectroscopic radiation portal monitor data using principal components analysis</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.</description><subject>ALGORITHMS</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Borders</subject><subject>CARGO</subject><subject>DATA ANALYSIS</subject><subject>ENTRY CONTROL SYSTEMS</subject><subject>GAMMA DETECTION</subject><subject>Gamma ray detection</subject><subject>Gamma ray detectors</subject><subject>gamma-ray spectral analysis</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Monitors</subject><subject>multivariate statistics</subject><subject>Nuclear measurements</subject><subject>Nuisance</subject><subject>Population (statistical)</subject><subject>Portals</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Probability</subject><subject>Radiation monitoring</subject><subject>RADIATION MONITORS</subject><subject>radiation portal monitoring</subject><subject>SPECTRA</subject><subject>Spectroscopy</subject><subject>Studies</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkbtLBDEQh4MoeD5qC5toY7VnHpvcpBTxBaKFZ2URctmsRvaSNckV_vfmWEGwGob55gczH0InlMwpJepy-fQyZ4TIOSxaAL6DZlQIaKhYwC6aEUKhUa1S--gg58_atoKIGXq7Cmb4zj7j2OM8OltSzDaO3uJkOm-KjwGPMRUz4HUMvsSEO1MM3mQf3vGYfLB-rEMb12MMLpSMzW_kEdrrzZDd8W89RK-3N8vr--bx-e7h-uqxsbyVpXEUJEhJWWeFk4qzjlFiamMla8nCglx1XArpesVI2wNYtuIGlDGs47wj_BCdTbkxF6-z9cXZDxtDqNdogAWXtDIXEzOm-LVxuei1z9YNgwkubnLFFAemBFTy_B_5GTepnpS1ooxSCmwbdzlBtr4rJ9fr-om1Sd-aEr3VoasOvdWhJx1143Ta8M65P1puNQj-Axrkhqs</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Runkle, R.C.</creator><creator>Tardiff, M.F.</creator><creator>Anderson, K.K.</creator><creator>Carlson, D.K.</creator><creator>Smith, L.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>20060601</creationdate><title>Analysis of spectroscopic radiation portal monitor data using principal components analysis</title><author>Runkle, R.C. ; Tardiff, M.F. ; Anderson, K.K. ; Carlson, D.K. ; Smith, L.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-e18686612dc5e6932d210adc5c62407c86bd3656ef9204f88c2b3a89aa2d33d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGORITHMS</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Borders</topic><topic>CARGO</topic><topic>DATA ANALYSIS</topic><topic>ENTRY CONTROL SYSTEMS</topic><topic>GAMMA DETECTION</topic><topic>Gamma ray detection</topic><topic>Gamma ray detectors</topic><topic>gamma-ray spectral analysis</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Monitors</topic><topic>multivariate statistics</topic><topic>Nuclear measurements</topic><topic>Nuisance</topic><topic>Population (statistical)</topic><topic>Portals</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Probability</topic><topic>Radiation monitoring</topic><topic>RADIATION MONITORS</topic><topic>radiation portal monitoring</topic><topic>SPECTRA</topic><topic>Spectroscopy</topic><topic>Studies</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runkle, R.C.</creatorcontrib><creatorcontrib>Tardiff, M.F.</creatorcontrib><creatorcontrib>Anderson, K.K.</creatorcontrib><creatorcontrib>Carlson, D.K.</creatorcontrib><creatorcontrib>Smith, L.E.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Runkle, R.C.</au><au>Tardiff, M.F.</au><au>Anderson, K.K.</au><au>Carlson, D.K.</au><au>Smith, L.E.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of spectroscopic radiation portal monitor data using principal components analysis</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>53</volume><issue>3</issue><spage>1418</spage><epage>1423</epage><pages>1418-1423</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Many international border crossings screen cargo for illicit nuclear material using radiation portal monitors (RPMs) that measure the gamma-ray flux emitted by vehicles. Screening often consists of primary, which acts as a trip-wire for suspect vehicles, and secondary, which locates the radiation source and performs isotopic identification. The authors present a method of anomaly detection for primary screening that uses past observations of gamma-ray signatures to define an expected benign vehicle population. Newly acquired spectra are then compared to this expected population using statistical criteria that reflect acceptable alarm rates and probabilities of detection. Shown here is an analysis of spectroscopic RPM data collected at an international border crossing using this technique. The raw data were analyzed to develop an expected benign vehicle population by decimating the original pulse-height channels, extracting composite variables with principal components analysis, and estimating variance-weighted distances from the "mean vehicle spectra" with the Mahalanobis distance metric. The following analysis considers data acquired with both NaI(Tl)-based and plastic scintillator-based RPMs. For each system, performance estimates for anomaly sources are compared to common nuisance sources. The algorithm reported here shows promising results in that it is more sensitive to the anomaly sources than common nuisance sources for both RPM types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2006.874883</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2006-06, Vol.53 (3), p.1418-1423
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_912111821
source IEEE Electronic Library (IEL)
subjects ALGORITHMS
Anomalies
Anomaly detection
Borders
CARGO
DATA ANALYSIS
ENTRY CONTROL SYSTEMS
GAMMA DETECTION
Gamma ray detection
Gamma ray detectors
gamma-ray spectral analysis
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Monitors
multivariate statistics
Nuclear measurements
Nuisance
Population (statistical)
Portals
Principal component analysis
Principal components analysis
Probability
Radiation monitoring
RADIATION MONITORS
radiation portal monitoring
SPECTRA
Spectroscopy
Studies
Vehicle detection
Vehicles
title Analysis of spectroscopic radiation portal monitor data using principal components analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20spectroscopic%20radiation%20portal%20monitor%20data%20using%20principal%20components%20analysis&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Runkle,%20R.C.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2006-06-01&rft.volume=53&rft.issue=3&rft.spage=1418&rft.epage=1423&rft.pages=1418-1423&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2006.874883&rft_dat=%3Cproquest_RIE%3E889382958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912111821&rft_id=info:pmid/&rft_ieee_id=1645055&rfr_iscdi=true