Stress/Strain Induced Flux Pinning in Highly Dense Bulks
We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed v...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2009-06, Vol.19 (3), p.2722-2725 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2725 |
---|---|
container_issue | 3 |
container_start_page | 2722 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 19 |
creator | Zeng, R. Shi Xue Dou Lu, L. Li, W.X. Poh, C.K. Kim, J.H. Horvat, J. Shi, D.Q. Wang, J.L. Munroe, P. Wang, X.F. Zheng, R.K. Ringer, S.P. Rindfleisch, M. Tomsic, M. |
description | We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different. |
doi_str_mv | 10.1109/TASC.2009.2019577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912059903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152926</ieee_id><sourcerecordid>2543544371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYj-AONl432h02637RFRhIREE_DclO2Ai2vBlk3k39sNxMu8l8l7M8lHyD3QAQDVw-VoMR4wSnUaoIWUF6QHQqicCRCXyVMBuWKMX5ObGLeUQqEK0SNqcQgY4zCJrX02866t0GWTpv3N3mvva7_J0n5abz6bY_aMPmL21DZf8ZZcrW0T8e6sffIxeVmOp_n87XU2Hs3zCrjkebFyUlnpbGm1AAsSLHJUyZVKlZIj8hUXZcGoVM66UmnnrC4YcscFcM775PF0dx92Py3Gg9nu2uDTS6OBUaE17UJwClVhF2PAtdmH-tuGowFqOj6m42M6PubMJ3UeTp0aEf_ziRbTrOR_ZtBe9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912059903</pqid></control><display><type>article</type><title>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, R. ; Shi Xue Dou ; Lu, L. ; Li, W.X. ; Poh, C.K. ; Kim, J.H. ; Horvat, J. ; Shi, D.Q. ; Wang, J.L. ; Munroe, P. ; Wang, X.F. ; Zheng, R.K. ; Ringer, S.P. ; Rindfleisch, M. ; Tomsic, M.</creator><creatorcontrib>Zeng, R. ; Shi Xue Dou ; Lu, L. ; Li, W.X. ; Poh, C.K. ; Kim, J.H. ; Horvat, J. ; Shi, D.Q. ; Wang, J.L. ; Munroe, P. ; Wang, X.F. ; Zheng, R.K. ; Ringer, S.P. ; Rindfleisch, M. ; Tomsic, M.</creatorcontrib><description>We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2009.2019577</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Australia ; Capacitive sensors ; Critical current density ; Crystallization ; Flux pinning ; Grain boundaries ; Nanoparticles ; Powders ; Silicon carbide ; strain field ; Stress ; Temperature ; {\rm MgB}_{2}</subject><ispartof>IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.2722-2725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</citedby><cites>FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, R.</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><creatorcontrib>Lu, L.</creatorcontrib><creatorcontrib>Li, W.X.</creatorcontrib><creatorcontrib>Poh, C.K.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Horvat, J.</creatorcontrib><creatorcontrib>Shi, D.Q.</creatorcontrib><creatorcontrib>Wang, J.L.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Wang, X.F.</creatorcontrib><creatorcontrib>Zheng, R.K.</creatorcontrib><creatorcontrib>Ringer, S.P.</creatorcontrib><creatorcontrib>Rindfleisch, M.</creatorcontrib><creatorcontrib>Tomsic, M.</creatorcontrib><title>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.</description><subject>Australia</subject><subject>Capacitive sensors</subject><subject>Critical current density</subject><subject>Crystallization</subject><subject>Flux pinning</subject><subject>Grain boundaries</subject><subject>Nanoparticles</subject><subject>Powders</subject><subject>Silicon carbide</subject><subject>strain field</subject><subject>Stress</subject><subject>Temperature</subject><subject>{\rm MgB}_{2}</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYj-AONl432h02637RFRhIREE_DclO2Ai2vBlk3k39sNxMu8l8l7M8lHyD3QAQDVw-VoMR4wSnUaoIWUF6QHQqicCRCXyVMBuWKMX5ObGLeUQqEK0SNqcQgY4zCJrX02866t0GWTpv3N3mvva7_J0n5abz6bY_aMPmL21DZf8ZZcrW0T8e6sffIxeVmOp_n87XU2Hs3zCrjkebFyUlnpbGm1AAsSLHJUyZVKlZIj8hUXZcGoVM66UmnnrC4YcscFcM775PF0dx92Py3Gg9nu2uDTS6OBUaE17UJwClVhF2PAtdmH-tuGowFqOj6m42M6PubMJ3UeTp0aEf_ziRbTrOR_ZtBe9g</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Zeng, R.</creator><creator>Shi Xue Dou</creator><creator>Lu, L.</creator><creator>Li, W.X.</creator><creator>Poh, C.K.</creator><creator>Kim, J.H.</creator><creator>Horvat, J.</creator><creator>Shi, D.Q.</creator><creator>Wang, J.L.</creator><creator>Munroe, P.</creator><creator>Wang, X.F.</creator><creator>Zheng, R.K.</creator><creator>Ringer, S.P.</creator><creator>Rindfleisch, M.</creator><creator>Tomsic, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200906</creationdate><title>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</title><author>Zeng, R. ; Shi Xue Dou ; Lu, L. ; Li, W.X. ; Poh, C.K. ; Kim, J.H. ; Horvat, J. ; Shi, D.Q. ; Wang, J.L. ; Munroe, P. ; Wang, X.F. ; Zheng, R.K. ; Ringer, S.P. ; Rindfleisch, M. ; Tomsic, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Capacitive sensors</topic><topic>Critical current density</topic><topic>Crystallization</topic><topic>Flux pinning</topic><topic>Grain boundaries</topic><topic>Nanoparticles</topic><topic>Powders</topic><topic>Silicon carbide</topic><topic>strain field</topic><topic>Stress</topic><topic>Temperature</topic><topic>{\rm MgB}_{2}</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, R.</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><creatorcontrib>Lu, L.</creatorcontrib><creatorcontrib>Li, W.X.</creatorcontrib><creatorcontrib>Poh, C.K.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Horvat, J.</creatorcontrib><creatorcontrib>Shi, D.Q.</creatorcontrib><creatorcontrib>Wang, J.L.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Wang, X.F.</creatorcontrib><creatorcontrib>Zheng, R.K.</creatorcontrib><creatorcontrib>Ringer, S.P.</creatorcontrib><creatorcontrib>Rindfleisch, M.</creatorcontrib><creatorcontrib>Tomsic, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, R.</au><au>Shi Xue Dou</au><au>Lu, L.</au><au>Li, W.X.</au><au>Poh, C.K.</au><au>Kim, J.H.</au><au>Horvat, J.</au><au>Shi, D.Q.</au><au>Wang, J.L.</au><au>Munroe, P.</au><au>Wang, X.F.</au><au>Zheng, R.K.</au><au>Ringer, S.P.</au><au>Rindfleisch, M.</au><au>Tomsic, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2009-06</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>2722</spage><epage>2725</epage><pages>2722-2725</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2009.2019577</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.2722-2725 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_912059903 |
source | IEEE Electronic Library (IEL) |
subjects | Australia Capacitive sensors Critical current density Crystallization Flux pinning Grain boundaries Nanoparticles Powders Silicon carbide strain field Stress Temperature {\rm MgB}_{2} |
title | Stress/Strain Induced Flux Pinning in Highly Dense Bulks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress/Strain%20Induced%20Flux%20Pinning%20in%20Highly%20Dense%20Bulks&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Zeng,%20R.&rft.date=2009-06&rft.volume=19&rft.issue=3&rft.spage=2722&rft.epage=2725&rft.pages=2722-2725&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2009.2019577&rft_dat=%3Cproquest_RIE%3E2543544371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912059903&rft_id=info:pmid/&rft_ieee_id=5152926&rfr_iscdi=true |