Stress/Strain Induced Flux Pinning in Highly Dense Bulks

We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2009-06, Vol.19 (3), p.2722-2725
Hauptverfasser: Zeng, R., Shi Xue Dou, Lu, L., Li, W.X., Poh, C.K., Kim, J.H., Horvat, J., Shi, D.Q., Wang, J.L., Munroe, P., Wang, X.F., Zheng, R.K., Ringer, S.P., Rindfleisch, M., Tomsic, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2725
container_issue 3
container_start_page 2722
container_title IEEE transactions on applied superconductivity
container_volume 19
creator Zeng, R.
Shi Xue Dou
Lu, L.
Li, W.X.
Poh, C.K.
Kim, J.H.
Horvat, J.
Shi, D.Q.
Wang, J.L.
Munroe, P.
Wang, X.F.
Zheng, R.K.
Ringer, S.P.
Rindfleisch, M.
Tomsic, M.
description We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.
doi_str_mv 10.1109/TASC.2009.2019577
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912059903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152926</ieee_id><sourcerecordid>2543544371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYj-AONl432h02637RFRhIREE_DclO2Ai2vBlk3k39sNxMu8l8l7M8lHyD3QAQDVw-VoMR4wSnUaoIWUF6QHQqicCRCXyVMBuWKMX5ObGLeUQqEK0SNqcQgY4zCJrX02866t0GWTpv3N3mvva7_J0n5abz6bY_aMPmL21DZf8ZZcrW0T8e6sffIxeVmOp_n87XU2Hs3zCrjkebFyUlnpbGm1AAsSLHJUyZVKlZIj8hUXZcGoVM66UmnnrC4YcscFcM775PF0dx92Py3Gg9nu2uDTS6OBUaE17UJwClVhF2PAtdmH-tuGowFqOj6m42M6PubMJ3UeTp0aEf_ziRbTrOR_ZtBe9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912059903</pqid></control><display><type>article</type><title>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, R. ; Shi Xue Dou ; Lu, L. ; Li, W.X. ; Poh, C.K. ; Kim, J.H. ; Horvat, J. ; Shi, D.Q. ; Wang, J.L. ; Munroe, P. ; Wang, X.F. ; Zheng, R.K. ; Ringer, S.P. ; Rindfleisch, M. ; Tomsic, M.</creator><creatorcontrib>Zeng, R. ; Shi Xue Dou ; Lu, L. ; Li, W.X. ; Poh, C.K. ; Kim, J.H. ; Horvat, J. ; Shi, D.Q. ; Wang, J.L. ; Munroe, P. ; Wang, X.F. ; Zheng, R.K. ; Ringer, S.P. ; Rindfleisch, M. ; Tomsic, M.</creatorcontrib><description>We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2009.2019577</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Australia ; Capacitive sensors ; Critical current density ; Crystallization ; Flux pinning ; Grain boundaries ; Nanoparticles ; Powders ; Silicon carbide ; strain field ; Stress ; Temperature ; {\rm MgB}_{2}</subject><ispartof>IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.2722-2725</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</citedby><cites>FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, R.</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><creatorcontrib>Lu, L.</creatorcontrib><creatorcontrib>Li, W.X.</creatorcontrib><creatorcontrib>Poh, C.K.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Horvat, J.</creatorcontrib><creatorcontrib>Shi, D.Q.</creatorcontrib><creatorcontrib>Wang, J.L.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Wang, X.F.</creatorcontrib><creatorcontrib>Zheng, R.K.</creatorcontrib><creatorcontrib>Ringer, S.P.</creatorcontrib><creatorcontrib>Rindfleisch, M.</creatorcontrib><creatorcontrib>Tomsic, M.</creatorcontrib><title>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.</description><subject>Australia</subject><subject>Capacitive sensors</subject><subject>Critical current density</subject><subject>Crystallization</subject><subject>Flux pinning</subject><subject>Grain boundaries</subject><subject>Nanoparticles</subject><subject>Powders</subject><subject>Silicon carbide</subject><subject>strain field</subject><subject>Stress</subject><subject>Temperature</subject><subject>{\rm MgB}_{2}</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYj-AONl432h02637RFRhIREE_DclO2Ai2vBlk3k39sNxMu8l8l7M8lHyD3QAQDVw-VoMR4wSnUaoIWUF6QHQqicCRCXyVMBuWKMX5ObGLeUQqEK0SNqcQgY4zCJrX02866t0GWTpv3N3mvva7_J0n5abz6bY_aMPmL21DZf8ZZcrW0T8e6sffIxeVmOp_n87XU2Hs3zCrjkebFyUlnpbGm1AAsSLHJUyZVKlZIj8hUXZcGoVM66UmnnrC4YcscFcM775PF0dx92Py3Gg9nu2uDTS6OBUaE17UJwClVhF2PAtdmH-tuGowFqOj6m42M6PubMJ3UeTp0aEf_ziRbTrOR_ZtBe9g</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Zeng, R.</creator><creator>Shi Xue Dou</creator><creator>Lu, L.</creator><creator>Li, W.X.</creator><creator>Poh, C.K.</creator><creator>Kim, J.H.</creator><creator>Horvat, J.</creator><creator>Shi, D.Q.</creator><creator>Wang, J.L.</creator><creator>Munroe, P.</creator><creator>Wang, X.F.</creator><creator>Zheng, R.K.</creator><creator>Ringer, S.P.</creator><creator>Rindfleisch, M.</creator><creator>Tomsic, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200906</creationdate><title>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</title><author>Zeng, R. ; Shi Xue Dou ; Lu, L. ; Li, W.X. ; Poh, C.K. ; Kim, J.H. ; Horvat, J. ; Shi, D.Q. ; Wang, J.L. ; Munroe, P. ; Wang, X.F. ; Zheng, R.K. ; Ringer, S.P. ; Rindfleisch, M. ; Tomsic, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1373-4bd78a7da6a951a171ae3e81a1688673ee3b35642078dad689dda942e3d351333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Capacitive sensors</topic><topic>Critical current density</topic><topic>Crystallization</topic><topic>Flux pinning</topic><topic>Grain boundaries</topic><topic>Nanoparticles</topic><topic>Powders</topic><topic>Silicon carbide</topic><topic>strain field</topic><topic>Stress</topic><topic>Temperature</topic><topic>{\rm MgB}_{2}</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, R.</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><creatorcontrib>Lu, L.</creatorcontrib><creatorcontrib>Li, W.X.</creatorcontrib><creatorcontrib>Poh, C.K.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Horvat, J.</creatorcontrib><creatorcontrib>Shi, D.Q.</creatorcontrib><creatorcontrib>Wang, J.L.</creatorcontrib><creatorcontrib>Munroe, P.</creatorcontrib><creatorcontrib>Wang, X.F.</creatorcontrib><creatorcontrib>Zheng, R.K.</creatorcontrib><creatorcontrib>Ringer, S.P.</creatorcontrib><creatorcontrib>Rindfleisch, M.</creatorcontrib><creatorcontrib>Tomsic, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, R.</au><au>Shi Xue Dou</au><au>Lu, L.</au><au>Li, W.X.</au><au>Poh, C.K.</au><au>Kim, J.H.</au><au>Horvat, J.</au><au>Shi, D.Q.</au><au>Wang, J.L.</au><au>Munroe, P.</au><au>Wang, X.F.</au><au>Zheng, R.K.</au><au>Ringer, S.P.</au><au>Rindfleisch, M.</au><au>Tomsic, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress/Strain Induced Flux Pinning in Highly Dense Bulks</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2009-06</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>2722</spage><epage>2725</epage><pages>2722-2725</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We have systematically studied the flux pinning behavior of MgB 2 bulks synthesized by direct diffusion of Mg into pressed pellets of high purity crystalline B powder, with and without mixing with C and SiC nanoparticles, at a reaction temperature of 850 deg C for 10 hrs. All of the samples showed very high purity and high density, but their microstructure and flux pinning behavior showed significant differences. It was found that the pure MgB 2 agrees with the deltaT c pinning model, nano-C doped MgB 2 agrees with the delta l pinning model, while the SiC+MgB 2 composite agrees with the deltaepsiv pinning model (stress/strain field pinning), since the dominant micro-defects that influence the flux pinning in these three samples are different.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2009.2019577</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.2722-2725
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_912059903
source IEEE Electronic Library (IEL)
subjects Australia
Capacitive sensors
Critical current density
Crystallization
Flux pinning
Grain boundaries
Nanoparticles
Powders
Silicon carbide
strain field
Stress
Temperature
{\rm MgB}_{2}
title Stress/Strain Induced Flux Pinning in Highly Dense Bulks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress/Strain%20Induced%20Flux%20Pinning%20in%20Highly%20Dense%20Bulks&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Zeng,%20R.&rft.date=2009-06&rft.volume=19&rft.issue=3&rft.spage=2722&rft.epage=2725&rft.pages=2722-2725&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2009.2019577&rft_dat=%3Cproquest_RIE%3E2543544371%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912059903&rft_id=info:pmid/&rft_ieee_id=5152926&rfr_iscdi=true