Toward Automated Anomaly Identification in Large-Scale Systems

When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-consuming, error-prone, and even worse, no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2010-02, Vol.21 (2), p.174-187
Hauptverfasser: Lan, Zhiling, Zheng, Ziming, Li, Yawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 2
container_start_page 174
container_title IEEE transactions on parallel and distributed systems
container_volume 21
creator Lan, Zhiling
Zheng, Ziming
Li, Yawei
description When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-consuming, error-prone, and even worse, not scalable. In this paper, we present an automated mechanism for node-level anomaly identification in large-scale systems. A set of techniques is presented to automatically analyze collected data: data transformation to construct a uniform data format for data analysis, feature extraction to reduce data size, and unsupervised learning to detect the nodes acting differently from others. Moreover, we compare two techniques, principal component analysis (PCA) and independent component analysis (ICA), for feature extraction. We evaluate our prototype implementation by injecting a variety of faults into a production system at NCSA. The results show that our mechanism, in particular, the one using ICA-based feature extraction, can effectively identify faulty nodes with high accuracy and low computation overhead.
doi_str_mv 10.1109/TPDS.2009.52
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912031664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4815224</ieee_id><sourcerecordid>2543477621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-aa791faeed728daa9d3f93138da63ca843c64a30d8f599f2baecd24066396a623</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRsFZv3rwEL15M3Xd2L0Kpr0JBofW8jJuJpORRdxOk_96EigdP8x0-ZoaPkEtGZ4xRe7d5e1jPOKV2pvgRmTClTMqZEccDU6lSy5k9JWcxbillUlE5Ifeb9htCnsz7rq2hw4GaAap9ssyx6cqi9NCVbZOUTbKC8Inp2kOFyXofO6zjOTkpoIp48Tun5P3pcbN4SVevz8vFfJV6oXiXAmSWFYCYZ9zkADYXhRVMDKyFByOF1xIEzU2hrC34B6DPuaRaC6tBczElN4e9u9B-9Rg7V5fRY1VBg20fnckU5SyzajCv_5nbtg_N8JyzjFPBtJaDdHuQfGhjDFi4XShrCHvHqBtTujGlG1M6NV6_OuglIv6p0jDFuRQ_sO1ueg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912031664</pqid></control><display><type>article</type><title>Toward Automated Anomaly Identification in Large-Scale Systems</title><source>IEEE Xplore</source><creator>Lan, Zhiling ; Zheng, Ziming ; Li, Yawei</creator><creatorcontrib>Lan, Zhiling ; Zheng, Ziming ; Li, Yawei</creatorcontrib><description>When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-consuming, error-prone, and even worse, not scalable. In this paper, we present an automated mechanism for node-level anomaly identification in large-scale systems. A set of techniques is presented to automatically analyze collected data: data transformation to construct a uniform data format for data analysis, feature extraction to reduce data size, and unsupervised learning to detect the nodes acting differently from others. Moreover, we compare two techniques, principal component analysis (PCA) and independent component analysis (ICA), for feature extraction. We evaluate our prototype implementation by injecting a variety of faults into a production system at NCSA. The results show that our mechanism, in particular, the one using ICA-based feature extraction, can effectively identify faulty nodes with high accuracy and low computation overhead.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2009.52</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly identification ; Application software ; Automated ; Automation ; Computer errors ; Computer networks ; Data analysis ; Fault diagnosis ; Feature extraction ; Format ; Independent component analysis ; Large-scale systems ; outlier detection ; Principal component analysis ; Principal components analysis ; Production systems ; Studies ; Transformations ; Unsupervised learning</subject><ispartof>IEEE transactions on parallel and distributed systems, 2010-02, Vol.21 (2), p.174-187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-aa791faeed728daa9d3f93138da63ca843c64a30d8f599f2baecd24066396a623</citedby><cites>FETCH-LOGICAL-c352t-aa791faeed728daa9d3f93138da63ca843c64a30d8f599f2baecd24066396a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4815224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4815224$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lan, Zhiling</creatorcontrib><creatorcontrib>Zheng, Ziming</creatorcontrib><creatorcontrib>Li, Yawei</creatorcontrib><title>Toward Automated Anomaly Identification in Large-Scale Systems</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-consuming, error-prone, and even worse, not scalable. In this paper, we present an automated mechanism for node-level anomaly identification in large-scale systems. A set of techniques is presented to automatically analyze collected data: data transformation to construct a uniform data format for data analysis, feature extraction to reduce data size, and unsupervised learning to detect the nodes acting differently from others. Moreover, we compare two techniques, principal component analysis (PCA) and independent component analysis (ICA), for feature extraction. We evaluate our prototype implementation by injecting a variety of faults into a production system at NCSA. The results show that our mechanism, in particular, the one using ICA-based feature extraction, can effectively identify faulty nodes with high accuracy and low computation overhead.</description><subject>Anomalies</subject><subject>Anomaly identification</subject><subject>Application software</subject><subject>Automated</subject><subject>Automation</subject><subject>Computer errors</subject><subject>Computer networks</subject><subject>Data analysis</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Format</subject><subject>Independent component analysis</subject><subject>Large-scale systems</subject><subject>outlier detection</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Production systems</subject><subject>Studies</subject><subject>Transformations</subject><subject>Unsupervised learning</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRsFZv3rwEL15M3Xd2L0Kpr0JBofW8jJuJpORRdxOk_96EigdP8x0-ZoaPkEtGZ4xRe7d5e1jPOKV2pvgRmTClTMqZEccDU6lSy5k9JWcxbillUlE5Ifeb9htCnsz7rq2hw4GaAap9ssyx6cqi9NCVbZOUTbKC8Inp2kOFyXofO6zjOTkpoIp48Tun5P3pcbN4SVevz8vFfJV6oXiXAmSWFYCYZ9zkADYXhRVMDKyFByOF1xIEzU2hrC34B6DPuaRaC6tBczElN4e9u9B-9Rg7V5fRY1VBg20fnckU5SyzajCv_5nbtg_N8JyzjFPBtJaDdHuQfGhjDFi4XShrCHvHqBtTujGlG1M6NV6_OuglIv6p0jDFuRQ_sO1ueg</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Lan, Zhiling</creator><creator>Zheng, Ziming</creator><creator>Li, Yawei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201002</creationdate><title>Toward Automated Anomaly Identification in Large-Scale Systems</title><author>Lan, Zhiling ; Zheng, Ziming ; Li, Yawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-aa791faeed728daa9d3f93138da63ca843c64a30d8f599f2baecd24066396a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anomalies</topic><topic>Anomaly identification</topic><topic>Application software</topic><topic>Automated</topic><topic>Automation</topic><topic>Computer errors</topic><topic>Computer networks</topic><topic>Data analysis</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Format</topic><topic>Independent component analysis</topic><topic>Large-scale systems</topic><topic>outlier detection</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Production systems</topic><topic>Studies</topic><topic>Transformations</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Zhiling</creatorcontrib><creatorcontrib>Zheng, Ziming</creatorcontrib><creatorcontrib>Li, Yawei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lan, Zhiling</au><au>Zheng, Ziming</au><au>Li, Yawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Automated Anomaly Identification in Large-Scale Systems</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2010-02</date><risdate>2010</risdate><volume>21</volume><issue>2</issue><spage>174</spage><epage>187</epage><pages>174-187</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-consuming, error-prone, and even worse, not scalable. In this paper, we present an automated mechanism for node-level anomaly identification in large-scale systems. A set of techniques is presented to automatically analyze collected data: data transformation to construct a uniform data format for data analysis, feature extraction to reduce data size, and unsupervised learning to detect the nodes acting differently from others. Moreover, we compare two techniques, principal component analysis (PCA) and independent component analysis (ICA), for feature extraction. We evaluate our prototype implementation by injecting a variety of faults into a production system at NCSA. The results show that our mechanism, in particular, the one using ICA-based feature extraction, can effectively identify faulty nodes with high accuracy and low computation overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2009.52</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2010-02, Vol.21 (2), p.174-187
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_912031664
source IEEE Xplore
subjects Anomalies
Anomaly identification
Application software
Automated
Automation
Computer errors
Computer networks
Data analysis
Fault diagnosis
Feature extraction
Format
Independent component analysis
Large-scale systems
outlier detection
Principal component analysis
Principal components analysis
Production systems
Studies
Transformations
Unsupervised learning
title Toward Automated Anomaly Identification in Large-Scale Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Automated%20Anomaly%20Identification%20in%20Large-Scale%20Systems&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Lan,%20Zhiling&rft.date=2010-02&rft.volume=21&rft.issue=2&rft.spage=174&rft.epage=187&rft.pages=174-187&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2009.52&rft_dat=%3Cproquest_RIE%3E2543477621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912031664&rft_id=info:pmid/&rft_ieee_id=4815224&rfr_iscdi=true