Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners

Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2009-06, Vol.56 (3), p.549-556
Hauptverfasser: Chaudhari, A.J., Joshi, A.A., Yibao Wu, Leahy, R.M., Cherry, S.R., Badawi, R.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 3
container_start_page 549
container_title IEEE transactions on nuclear science
container_volume 56
creator Chaudhari, A.J.
Joshi, A.A.
Yibao Wu
Leahy, R.M.
Cherry, S.R.
Badawi, R.D.
description Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulas derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the ldquotemplaterdquo. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to a large reduction in manual labor and indeed can routinely be used for calibration and characterization studies in MRI-compatible PET scanners based on PSAPDs.
doi_str_mv 10.1109/TNS.2009.2018841
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_912011783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075930</ieee_id><sourcerecordid>869846398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-477a08c17c661e328e690c420d8ef3640e72fc1e3e938212c2edb94aa493ebd23</originalsourceid><addsrcrecordid>eNp9kktvEzEUhS0EoqGwR0JCIxbAZoqfM_YGqQwFIhWoSFhbjucOcTUZB3sSqX-A381NEyJg0Y1f57tHuteHkKeMnjFGzZv5l9kZp9TgwrSW7B6ZMKV0yVSt75MJxdfSSGNOyKOcr_EqFVUPyQniFaNcTMiv2dqNwfXF-5DHmMYQh6KJKYG_PbqhLZp0k0ckpi0MY-iCd7dSF1Px-du0bOJqZ7HoobiKOey0cgbD7rSF4nzrejf4JYrLOMY2xBbKdy5DW1xdzIuZd8MAKT8mDzrXZ3hy2E_J9w8X8-ZTefn147Q5vyy9otVYyrp2VHtW-6piILiGylAvOW01dKKSFGreeVTACM0Z9xzahZHOSSNg0XJxSt7ufdebxQpajx0l19t1CiuXbmx0wf6rDGFpf8St5TVaMIUGrw4GKf7cQB7tKmQPPTYJcZOtroyWlTAayZd3kqISUhtRI_j6TpBpoWTNsDtEX_yHXsdNGnBi1jD8VFZrgRDdQz7FnBN0x_YYtbvYWIyN3cXGHmKDJc__Hsux4E9OEHi2BwIAHGVFa2UEFb8BZs3H8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912011783</pqid></control><display><type>article</type><title>Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners</title><source>IEEE Electronic Library (IEL)</source><creator>Chaudhari, A.J. ; Joshi, A.A. ; Yibao Wu ; Leahy, R.M. ; Cherry, S.R. ; Badawi, R.D.</creator><creatorcontrib>Chaudhari, A.J. ; Joshi, A.A. ; Yibao Wu ; Leahy, R.M. ; Cherry, S.R. ; Badawi, R.D.</creatorcontrib><description>Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulas derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the ldquotemplaterdquo. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to a large reduction in manual labor and indeed can routinely be used for calibration and characterization studies in MRI-compatible PET scanners based on PSAPDs.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2009.2018841</identifier><identifier>PMID: 20161023</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Avalanche photodiodes ; Crystal identification ; Crystals ; Detectors ; Distortion ; Event detection ; Floods ; Histograms ; Magnetic analysis ; Magnetic fields ; PET/MRI ; Photonic crystals ; Polyethylene terephthalates ; Positron emission tomography ; PSAPD ; Quality control ; Scanners ; spatial distortion correction ; Studies</subject><ispartof>IEEE transactions on nuclear science, 2009-06, Vol.56 (3), p.549-556</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-477a08c17c661e328e690c420d8ef3640e72fc1e3e938212c2edb94aa493ebd23</citedby><cites>FETCH-LOGICAL-c506t-477a08c17c661e328e690c420d8ef3640e72fc1e3e938212c2edb94aa493ebd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5075930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20161023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaudhari, A.J.</creatorcontrib><creatorcontrib>Joshi, A.A.</creatorcontrib><creatorcontrib>Yibao Wu</creatorcontrib><creatorcontrib>Leahy, R.M.</creatorcontrib><creatorcontrib>Cherry, S.R.</creatorcontrib><creatorcontrib>Badawi, R.D.</creatorcontrib><title>Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><addtitle>IEEE Trans Nucl Sci</addtitle><description>Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulas derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the ldquotemplaterdquo. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to a large reduction in manual labor and indeed can routinely be used for calibration and characterization studies in MRI-compatible PET scanners based on PSAPDs.</description><subject>Avalanche photodiodes</subject><subject>Crystal identification</subject><subject>Crystals</subject><subject>Detectors</subject><subject>Distortion</subject><subject>Event detection</subject><subject>Floods</subject><subject>Histograms</subject><subject>Magnetic analysis</subject><subject>Magnetic fields</subject><subject>PET/MRI</subject><subject>Photonic crystals</subject><subject>Polyethylene terephthalates</subject><subject>Positron emission tomography</subject><subject>PSAPD</subject><subject>Quality control</subject><subject>Scanners</subject><subject>spatial distortion correction</subject><subject>Studies</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kktvEzEUhS0EoqGwR0JCIxbAZoqfM_YGqQwFIhWoSFhbjucOcTUZB3sSqX-A381NEyJg0Y1f57tHuteHkKeMnjFGzZv5l9kZp9TgwrSW7B6ZMKV0yVSt75MJxdfSSGNOyKOcr_EqFVUPyQniFaNcTMiv2dqNwfXF-5DHmMYQh6KJKYG_PbqhLZp0k0ckpi0MY-iCd7dSF1Px-du0bOJqZ7HoobiKOey0cgbD7rSF4nzrejf4JYrLOMY2xBbKdy5DW1xdzIuZd8MAKT8mDzrXZ3hy2E_J9w8X8-ZTefn147Q5vyy9otVYyrp2VHtW-6piILiGylAvOW01dKKSFGreeVTACM0Z9xzahZHOSSNg0XJxSt7ufdebxQpajx0l19t1CiuXbmx0wf6rDGFpf8St5TVaMIUGrw4GKf7cQB7tKmQPPTYJcZOtroyWlTAayZd3kqISUhtRI_j6TpBpoWTNsDtEX_yHXsdNGnBi1jD8VFZrgRDdQz7FnBN0x_YYtbvYWIyN3cXGHmKDJc__Hsux4E9OEHi2BwIAHGVFa2UEFb8BZs3H8Q</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Chaudhari, A.J.</creator><creator>Joshi, A.A.</creator><creator>Yibao Wu</creator><creator>Leahy, R.M.</creator><creator>Cherry, S.R.</creator><creator>Badawi, R.D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090601</creationdate><title>Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners</title><author>Chaudhari, A.J. ; Joshi, A.A. ; Yibao Wu ; Leahy, R.M. ; Cherry, S.R. ; Badawi, R.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-477a08c17c661e328e690c420d8ef3640e72fc1e3e938212c2edb94aa493ebd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Avalanche photodiodes</topic><topic>Crystal identification</topic><topic>Crystals</topic><topic>Detectors</topic><topic>Distortion</topic><topic>Event detection</topic><topic>Floods</topic><topic>Histograms</topic><topic>Magnetic analysis</topic><topic>Magnetic fields</topic><topic>PET/MRI</topic><topic>Photonic crystals</topic><topic>Polyethylene terephthalates</topic><topic>Positron emission tomography</topic><topic>PSAPD</topic><topic>Quality control</topic><topic>Scanners</topic><topic>spatial distortion correction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhari, A.J.</creatorcontrib><creatorcontrib>Joshi, A.A.</creatorcontrib><creatorcontrib>Yibao Wu</creatorcontrib><creatorcontrib>Leahy, R.M.</creatorcontrib><creatorcontrib>Cherry, S.R.</creatorcontrib><creatorcontrib>Badawi, R.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaudhari, A.J.</au><au>Joshi, A.A.</au><au>Yibao Wu</au><au>Leahy, R.M.</au><au>Cherry, S.R.</au><au>Badawi, R.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><addtitle>IEEE Trans Nucl Sci</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>3</issue><spage>549</spage><epage>556</epage><pages>549-556</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Position-sensitive avalanche photodiodes (PSAPDs) are gaining widespread acceptance in modern PET scanner designs, and owing to their relative insensitivity to magnetic fields, especially in those that are MRI-compatible. Flood histograms in PET scanners are used to determine the crystal of annihilation photon interaction and hence, for detector characterization and routine quality control. For PET detectors that use PSAPDs, flood histograms show a characteristic pincushion distortion when Anger logic is used for event positioning. A small rotation in the flood histogram is also observed when the detectors are placed in a magnetic field. We first present a general purpose automatic method for spatial distortion correction for flood histograms of PSAPD-based PET detectors when placed both inside and outside a MRI scanner. Analytical formulas derived for this scheme are based on a hybrid approach that combines desirable properties from two existing event positioning schemes. The rotation of the flood histogram due to the magnetic field is determined iteratively and is accounted for in the scheme. We then provide implementation details of a method for crystal identification we have previously proposed and evaluate it for cases when the PET detectors are both outside and in a magnetic field. In this scheme, Fourier analysis is used to generate a lower-order spatial approximation of the distortion-corrected PSAPD flood histogram, which we call the ldquotemplaterdquo. The template is then registered to the flood histogram using a diffeomorphic iterative intensity-based warping scheme. The calculated deformation field is then applied to the segmentation of the template to obtain a segmentation of the flood histogram. A manual correction tool is also developed for exceptional cases. We present a quantitative assessment of the proposed distortion correction scheme and crystal identification method against conventional methods. Our results indicate that our proposed methods lead to a large reduction in manual labor and indeed can routinely be used for calibration and characterization studies in MRI-compatible PET scanners based on PSAPDs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20161023</pmid><doi>10.1109/TNS.2009.2018841</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2009-06, Vol.56 (3), p.549-556
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_912011783
source IEEE Electronic Library (IEL)
subjects Avalanche photodiodes
Crystal identification
Crystals
Detectors
Distortion
Event detection
Floods
Histograms
Magnetic analysis
Magnetic fields
PET/MRI
Photonic crystals
Polyethylene terephthalates
Positron emission tomography
PSAPD
Quality control
Scanners
spatial distortion correction
Studies
title Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Distortion%20Correction%20and%20Crystal%20Identification%20for%20MRI-Compatible%20Position-Sensitive%20Avalanche%20Photodiode-Based%20PET%20Scanners&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Chaudhari,%20A.J.&rft.date=2009-06-01&rft.volume=56&rft.issue=3&rft.spage=549&rft.epage=556&rft.pages=549-556&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2009.2018841&rft_dat=%3Cproquest_RIE%3E869846398%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912011783&rft_id=info:pmid/20161023&rft_ieee_id=5075930&rfr_iscdi=true