A model predictive controller for load-following operation of PWR reactors
The basic concept of a model predictive control method is to solve on-line, at each time step, an optimization problem for a finite future interval and to implement only the first optimal control input as the current control input. It is a suitable control strategy for time-varying systems, in parti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2005-08, Vol.52 (4), p.1009-1020 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1020 |
---|---|
container_issue | 4 |
container_start_page | 1009 |
container_title | IEEE transactions on nuclear science |
container_volume | 52 |
creator | Na, M.G Jung, D.W Shin, S.H Jang, J.W Lee, K.B Lee, Y.J |
description | The basic concept of a model predictive control method is to solve on-line, at each time step, an optimization problem for a finite future interval and to implement only the first optimal control input as the current control input. It is a suitable control strategy for time-varying systems, in particular, because the parameter estimator identifies a controller design model recursively at each time step, and also the model predictive controller recalculates an optimal control input at each time step by using newly measured signals. The proposed controller is applied to the integrated power level and axial power distribution controls for a Korea Standard Nuclear Power Plant (KSNP). The power level and the axial shape index are controlled by two kinds of the five regulating control rod banks and the two part-strength control rod banks together with the automatic adjustment of boric acid concentration. The three-dimensional reactor analysis code, Multipurpose Analyzer for Static and Transient Effects of Reactor, which models the KSNP, is interfaced to the proposed controller to verify the proposed controller for controlling the reactor power level and the axial shape index. It is known from numerical simulations that the proposed controller exhibits very fast tracking responses. |
doi_str_mv | 10.1109/TNS.2005.852651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_911985025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1495798</ieee_id><sourcerecordid>2543229931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-49dccee85845afe6f1d8ed3529b2651ab75f2210c7e54398ccfa3b0e13ddf6103</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKtnD16CBz1tm4_NbnIsxU9ERSseQ5pMZMt2syZbxX_vlhUED56GF553mOFB6JiSCaVETRf3zxNGiJhIwQpBd9CICiEzKkq5i0aEUJmpXKl9dJDSqo-5IGKEbmd4HRzUuI3gKttVH4BtaLoY6hoi9iHiOhiX-T6Hz6p5w6GFaLoqNDh4_Pj6hCMY24WYDtGeN3WCo585Ri-XF4v5dXb3cHUzn91lllPWZbly1gJIIXNhPBSeOgmOC6aW27vNshSeMUpsCSLnSlrrDV8SoNw5X1DCx-h82NvG8L6B1Ol1lSzUtWkgbJKWqmCsYLLsybN_SSYJL0ua9-DpH3AVNrHpv9CKUiUFYaKHpgNkY0gpgtdtrNYmfmlK9FaB7hXorQI9KOgbJ0OjAoBfOleiVJJ_A6logcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911985025</pqid></control><display><type>article</type><title>A model predictive controller for load-following operation of PWR reactors</title><source>IEEE Electronic Library (IEL)</source><creator>Na, M.G ; Jung, D.W ; Shin, S.H ; Jang, J.W ; Lee, K.B ; Lee, Y.J</creator><creatorcontrib>Na, M.G ; Jung, D.W ; Shin, S.H ; Jang, J.W ; Lee, K.B ; Lee, Y.J</creatorcontrib><description>The basic concept of a model predictive control method is to solve on-line, at each time step, an optimization problem for a finite future interval and to implement only the first optimal control input as the current control input. It is a suitable control strategy for time-varying systems, in particular, because the parameter estimator identifies a controller design model recursively at each time step, and also the model predictive controller recalculates an optimal control input at each time step by using newly measured signals. The proposed controller is applied to the integrated power level and axial power distribution controls for a Korea Standard Nuclear Power Plant (KSNP). The power level and the axial shape index are controlled by two kinds of the five regulating control rod banks and the two part-strength control rod banks together with the automatic adjustment of boric acid concentration. The three-dimensional reactor analysis code, Multipurpose Analyzer for Static and Transient Effects of Reactor, which models the KSNP, is interfaced to the proposed controller to verify the proposed controller for controlling the reactor power level and the axial shape index. It is known from numerical simulations that the proposed controller exhibits very fast tracking responses.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2005.852651</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Control rods ; Control systems ; Controllers ; Current control ; Inductors ; Load-following operation ; Mathematical models ; model predictive control ; Nuclear engineering ; Nuclear power generation ; Nuclear reactor components ; Nuclear reactors ; Optimal control ; Optimization methods ; parameter estimation ; Power system modeling ; Predictive control ; Predictive models ; Shape control ; Studies ; Time varying systems</subject><ispartof>IEEE transactions on nuclear science, 2005-08, Vol.52 (4), p.1009-1020</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-49dccee85845afe6f1d8ed3529b2651ab75f2210c7e54398ccfa3b0e13ddf6103</citedby><cites>FETCH-LOGICAL-c312t-49dccee85845afe6f1d8ed3529b2651ab75f2210c7e54398ccfa3b0e13ddf6103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1495798$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1495798$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Na, M.G</creatorcontrib><creatorcontrib>Jung, D.W</creatorcontrib><creatorcontrib>Shin, S.H</creatorcontrib><creatorcontrib>Jang, J.W</creatorcontrib><creatorcontrib>Lee, K.B</creatorcontrib><creatorcontrib>Lee, Y.J</creatorcontrib><title>A model predictive controller for load-following operation of PWR reactors</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The basic concept of a model predictive control method is to solve on-line, at each time step, an optimization problem for a finite future interval and to implement only the first optimal control input as the current control input. It is a suitable control strategy for time-varying systems, in particular, because the parameter estimator identifies a controller design model recursively at each time step, and also the model predictive controller recalculates an optimal control input at each time step by using newly measured signals. The proposed controller is applied to the integrated power level and axial power distribution controls for a Korea Standard Nuclear Power Plant (KSNP). The power level and the axial shape index are controlled by two kinds of the five regulating control rod banks and the two part-strength control rod banks together with the automatic adjustment of boric acid concentration. The three-dimensional reactor analysis code, Multipurpose Analyzer for Static and Transient Effects of Reactor, which models the KSNP, is interfaced to the proposed controller to verify the proposed controller for controlling the reactor power level and the axial shape index. It is known from numerical simulations that the proposed controller exhibits very fast tracking responses.</description><subject>Automatic control</subject><subject>Control rods</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Current control</subject><subject>Inductors</subject><subject>Load-following operation</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>Nuclear engineering</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Optimal control</subject><subject>Optimization methods</subject><subject>parameter estimation</subject><subject>Power system modeling</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Shape control</subject><subject>Studies</subject><subject>Time varying systems</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LAzEQhoMoWKtnD16CBz1tm4_NbnIsxU9ERSseQ5pMZMt2syZbxX_vlhUED56GF553mOFB6JiSCaVETRf3zxNGiJhIwQpBd9CICiEzKkq5i0aEUJmpXKl9dJDSqo-5IGKEbmd4HRzUuI3gKttVH4BtaLoY6hoi9iHiOhiX-T6Hz6p5w6GFaLoqNDh4_Pj6hCMY24WYDtGeN3WCo585Ri-XF4v5dXb3cHUzn91lllPWZbly1gJIIXNhPBSeOgmOC6aW27vNshSeMUpsCSLnSlrrDV8SoNw5X1DCx-h82NvG8L6B1Ol1lSzUtWkgbJKWqmCsYLLsybN_SSYJL0ua9-DpH3AVNrHpv9CKUiUFYaKHpgNkY0gpgtdtrNYmfmlK9FaB7hXorQI9KOgbJ0OjAoBfOleiVJJ_A6logcM</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Na, M.G</creator><creator>Jung, D.W</creator><creator>Shin, S.H</creator><creator>Jang, J.W</creator><creator>Lee, K.B</creator><creator>Lee, Y.J</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>200508</creationdate><title>A model predictive controller for load-following operation of PWR reactors</title><author>Na, M.G ; Jung, D.W ; Shin, S.H ; Jang, J.W ; Lee, K.B ; Lee, Y.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-49dccee85845afe6f1d8ed3529b2651ab75f2210c7e54398ccfa3b0e13ddf6103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Automatic control</topic><topic>Control rods</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Current control</topic><topic>Inductors</topic><topic>Load-following operation</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>Nuclear engineering</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Optimal control</topic><topic>Optimization methods</topic><topic>parameter estimation</topic><topic>Power system modeling</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Shape control</topic><topic>Studies</topic><topic>Time varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Na, M.G</creatorcontrib><creatorcontrib>Jung, D.W</creatorcontrib><creatorcontrib>Shin, S.H</creatorcontrib><creatorcontrib>Jang, J.W</creatorcontrib><creatorcontrib>Lee, K.B</creatorcontrib><creatorcontrib>Lee, Y.J</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Na, M.G</au><au>Jung, D.W</au><au>Shin, S.H</au><au>Jang, J.W</au><au>Lee, K.B</au><au>Lee, Y.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model predictive controller for load-following operation of PWR reactors</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2005-08</date><risdate>2005</risdate><volume>52</volume><issue>4</issue><spage>1009</spage><epage>1020</epage><pages>1009-1020</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The basic concept of a model predictive control method is to solve on-line, at each time step, an optimization problem for a finite future interval and to implement only the first optimal control input as the current control input. It is a suitable control strategy for time-varying systems, in particular, because the parameter estimator identifies a controller design model recursively at each time step, and also the model predictive controller recalculates an optimal control input at each time step by using newly measured signals. The proposed controller is applied to the integrated power level and axial power distribution controls for a Korea Standard Nuclear Power Plant (KSNP). The power level and the axial shape index are controlled by two kinds of the five regulating control rod banks and the two part-strength control rod banks together with the automatic adjustment of boric acid concentration. The three-dimensional reactor analysis code, Multipurpose Analyzer for Static and Transient Effects of Reactor, which models the KSNP, is interfaced to the proposed controller to verify the proposed controller for controlling the reactor power level and the axial shape index. It is known from numerical simulations that the proposed controller exhibits very fast tracking responses.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2005.852651</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2005-08, Vol.52 (4), p.1009-1020 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_911985025 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic control Control rods Control systems Controllers Current control Inductors Load-following operation Mathematical models model predictive control Nuclear engineering Nuclear power generation Nuclear reactor components Nuclear reactors Optimal control Optimization methods parameter estimation Power system modeling Predictive control Predictive models Shape control Studies Time varying systems |
title | A model predictive controller for load-following operation of PWR reactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20predictive%20controller%20for%20load-following%20operation%20of%20PWR%20reactors&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Na,%20M.G&rft.date=2005-08&rft.volume=52&rft.issue=4&rft.spage=1009&rft.epage=1020&rft.pages=1009-1020&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2005.852651&rft_dat=%3Cproquest_RIE%3E2543229931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911985025&rft_id=info:pmid/&rft_ieee_id=1495798&rfr_iscdi=true |