Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events
The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2011-11, Vol.68 (11), p.2481-2504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2504 |
---|---|
container_issue | 11 |
container_start_page | 2481 |
container_title | Journal of the atmospheric sciences |
container_volume | 68 |
creator | JOSS MATTHEWMAN, N ESLER, J. G |
description | The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the model vortex to split, and to express the splitting condition as a function of the model parameters determining the topography and circulation.
For a specified topographic forcing profile the model behavior is governed by two nondimensional parameters: the topographic forcing height M and a surf-zone potential vorticity parameter Ω. For relatively low M, vortex splits similar to observed SSWs occur only for a narrow range of Ω values. Further, a bifurcation in parameter space is observed: a small change in Ω (or M) beyond a critical value can lead to an abrupt transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results add an important new aspect to the “resonant excitation” theory of SSWs. Under this paradigm, it is not necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for upward wave propagation, in order to explain the occurrence of SSWs. |
doi_str_mv | 10.1175/jas-d-11-07.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_911488552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540112291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-7489380e0c7b2b5b43ae7295d0291ee0adb97df7c7a364aabebad2e2832d5d223</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtH70HxmJrMZpvEW6lVKwXFrR-3kN1kdUu7uyap6H_vlhZvzmVm4Pfeg4fQKaMDxkR6uTCBWMIYoWLA9lCPpUAJ5UO1j3qUAhCuQB6ioxAWtBsQrIfesuhNbEL74XxV4Gxtravxq_Grqn4P2AScuWVJ5uu6-_GTC01t6sKFAX40PuLpFX5pfHTfOGuXVYwbaPLl6hiO0UFplsGd7HYfPd9M5uM7Mnu4nY5HM1IkUkYiuFSJpI4WIoc8zXlinACVWgqKOUeNzZWwpSiESYbcmNzlxoIDmYBNLUDSR2db39Y3n2sXol40a193kVoxxqVM0w10_h8EEqiSoIayo8iWKnwTgnelbn21Mv5HM6o3Dev7Uaavu1NToVnHX-xcTSjMsvRdM1X4EwEXIuVcJb_7qnsK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820982968</pqid></control><display><type>article</type><title>Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>JOSS MATTHEWMAN, N ; ESLER, J. G</creator><creatorcontrib>JOSS MATTHEWMAN, N ; ESLER, J. G</creatorcontrib><description>The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the model vortex to split, and to express the splitting condition as a function of the model parameters determining the topography and circulation.
For a specified topographic forcing profile the model behavior is governed by two nondimensional parameters: the topographic forcing height M and a surf-zone potential vorticity parameter Ω. For relatively low M, vortex splits similar to observed SSWs occur only for a narrow range of Ω values. Further, a bifurcation in parameter space is observed: a small change in Ω (or M) beyond a critical value can lead to an abrupt transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results add an important new aspect to the “resonant excitation” theory of SSWs. Under this paradigm, it is not necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for upward wave propagation, in order to explain the occurrence of SSWs.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/jas-d-11-07.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Barotropic mode ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; Mathematical models ; Meteorology ; Modelling ; Parameters ; Physics of the high neutral atmosphere ; Planetary waves ; Polar vortex ; Potential vorticity ; Rossby waves ; Self tuning ; Splitting ; Stratosphere ; Stratospheric vortices ; Stratospheric warming ; Surf zone ; Topography ; Vortices ; Vorticity ; Wave propagation ; Winter</subject><ispartof>Journal of the atmospheric sciences, 2011-11, Vol.68 (11), p.2481-2504</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-7489380e0c7b2b5b43ae7295d0291ee0adb97df7c7a364aabebad2e2832d5d223</citedby><cites>FETCH-LOGICAL-c388t-7489380e0c7b2b5b43ae7295d0291ee0adb97df7c7a364aabebad2e2832d5d223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3679,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24775449$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JOSS MATTHEWMAN, N</creatorcontrib><creatorcontrib>ESLER, J. G</creatorcontrib><title>Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events</title><title>Journal of the atmospheric sciences</title><description>The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the model vortex to split, and to express the splitting condition as a function of the model parameters determining the topography and circulation.
For a specified topographic forcing profile the model behavior is governed by two nondimensional parameters: the topographic forcing height M and a surf-zone potential vorticity parameter Ω. For relatively low M, vortex splits similar to observed SSWs occur only for a narrow range of Ω values. Further, a bifurcation in parameter space is observed: a small change in Ω (or M) beyond a critical value can lead to an abrupt transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results add an important new aspect to the “resonant excitation” theory of SSWs. Under this paradigm, it is not necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for upward wave propagation, in order to explain the occurrence of SSWs.</description><subject>Barotropic mode</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Physics of the high neutral atmosphere</subject><subject>Planetary waves</subject><subject>Polar vortex</subject><subject>Potential vorticity</subject><subject>Rossby waves</subject><subject>Self tuning</subject><subject>Splitting</subject><subject>Stratosphere</subject><subject>Stratospheric vortices</subject><subject>Stratospheric warming</subject><subject>Surf zone</subject><subject>Topography</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Wave propagation</subject><subject>Winter</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LAzEQxYMoWKtH70HxmJrMZpvEW6lVKwXFrR-3kN1kdUu7uyap6H_vlhZvzmVm4Pfeg4fQKaMDxkR6uTCBWMIYoWLA9lCPpUAJ5UO1j3qUAhCuQB6ioxAWtBsQrIfesuhNbEL74XxV4Gxtravxq_Grqn4P2AScuWVJ5uu6-_GTC01t6sKFAX40PuLpFX5pfHTfOGuXVYwbaPLl6hiO0UFplsGd7HYfPd9M5uM7Mnu4nY5HM1IkUkYiuFSJpI4WIoc8zXlinACVWgqKOUeNzZWwpSiESYbcmNzlxoIDmYBNLUDSR2db39Y3n2sXol40a193kVoxxqVM0w10_h8EEqiSoIayo8iWKnwTgnelbn21Mv5HM6o3Dev7Uaavu1NToVnHX-xcTSjMsvRdM1X4EwEXIuVcJb_7qnsK</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>JOSS MATTHEWMAN, N</creator><creator>ESLER, J. G</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20111101</creationdate><title>Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events</title><author>JOSS MATTHEWMAN, N ; ESLER, J. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-7489380e0c7b2b5b43ae7295d0291ee0adb97df7c7a364aabebad2e2832d5d223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Barotropic mode</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Physics of the high neutral atmosphere</topic><topic>Planetary waves</topic><topic>Polar vortex</topic><topic>Potential vorticity</topic><topic>Rossby waves</topic><topic>Self tuning</topic><topic>Splitting</topic><topic>Stratosphere</topic><topic>Stratospheric vortices</topic><topic>Stratospheric warming</topic><topic>Surf zone</topic><topic>Topography</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Wave propagation</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JOSS MATTHEWMAN, N</creatorcontrib><creatorcontrib>ESLER, J. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JOSS MATTHEWMAN, N</au><au>ESLER, J. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>68</volume><issue>11</issue><spage>2481</spage><epage>2504</epage><pages>2481-2504</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the model vortex to split, and to express the splitting condition as a function of the model parameters determining the topography and circulation.
For a specified topographic forcing profile the model behavior is governed by two nondimensional parameters: the topographic forcing height M and a surf-zone potential vorticity parameter Ω. For relatively low M, vortex splits similar to observed SSWs occur only for a narrow range of Ω values. Further, a bifurcation in parameter space is observed: a small change in Ω (or M) beyond a critical value can lead to an abrupt transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results add an important new aspect to the “resonant excitation” theory of SSWs. Under this paradigm, it is not necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for upward wave propagation, in order to explain the occurrence of SSWs.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jas-d-11-07.1</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2011-11, Vol.68 (11), p.2481-2504 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_911488552 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Barotropic mode Earth, ocean, space Exact sciences and technology External geophysics Fluid dynamics Mathematical models Meteorology Modelling Parameters Physics of the high neutral atmosphere Planetary waves Polar vortex Potential vorticity Rossby waves Self tuning Splitting Stratosphere Stratospheric vortices Stratospheric warming Surf zone Topography Vortices Vorticity Wave propagation Winter |
title | Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratospheric%20Sudden%20Warmings%20as%20Self-Tuning%20Resonances.%20Part%20I:%20Vortex%20Splitting%20Events&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=JOSS%20MATTHEWMAN,%20N&rft.date=2011-11-01&rft.volume=68&rft.issue=11&rft.spage=2481&rft.epage=2504&rft.pages=2481-2504&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/jas-d-11-07.1&rft_dat=%3Cproquest_cross%3E2540112291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820982968&rft_id=info:pmid/&rfr_iscdi=true |