Yield Prediction for Integrated Circuits Manufacturing Through Hierarchical Bayesian Modeling of Spatial Defects
Accurate yield prediction to evaluate productivity, and to estimate production costs, is a critical issue in the highly competitive semiconductor industry. We propose yield models based on hierarchical Bayesian modeling of clustered spatial defects produced in integrated circuits (IC) manufacturing....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2011-12, Vol.60 (4), p.729-741 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 4 |
container_start_page | 729 |
container_title | IEEE transactions on reliability |
container_volume | 60 |
creator | Tao Yuan Ramadan, S. Z. Bae, S. J. |
description | Accurate yield prediction to evaluate productivity, and to estimate production costs, is a critical issue in the highly competitive semiconductor industry. We propose yield models based on hierarchical Bayesian modeling of clustered spatial defects produced in integrated circuits (IC) manufacturing. We use spatial locations of the IC chips on the wafers as covariates, and develop four models based on Poisson regression, negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression, and zero-inflated negative binomial (ZINB) regression. Along with the hierarchical Bayesian approaches, spatial variations of defects within one wafer as well as among different wafers are effectively incorporated in the yield models. Wafermap data obtained from an industrial collaborator are used to illustrate the proposed models. The results indicate that the Poisson regression model consistently underestimates the true yield because of extraneous Poisson variation caused by defect clustering. On the contrary, NB regression, ZIP regression, and ZINB regression models provide more reliable yield estimation and prediction in real applications. |
doi_str_mv | 10.1109/TR.2011.2161698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_906546190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5957294</ieee_id><sourcerecordid>2522812581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-91811e11dde798501e91630ea842cb03233a5af1ca8d2c58964cfcf8f4c392f23</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqUwM7BY7Gl9TpzaI5SPVmoFKmFgioxzbl2FpNjO0H9PqlZMp1f3vHfSQ8gtsBEAU-NiNeIMYMQhh1zJMzIAIWQCEw7nZMAYyEQJri7JVQjbPmaZkgOy-3JYV_TdY-VMdG1DbevpvIm49jpiRafOm87FQJe66aw2sfOuWdNi49tuvaEzh157s3FG1_RR7zE43dBlW2F9wFpLP3Y6un75hBZNDNfkwuo64M1pDsnny3MxnSWLt9f59GGRGC5lTBRIAASoKpwoKRiggjxlqGXGzTdLeZpqoS0YLStuhFR5Zqyx0mYmVdzydEjuj3d3vv3tMMRy23a-6V-WiuUiy0GxHhofIePbEDzacufdj_b7Elh5sFoWq_JgtTxZ7Rt3x4ZDxH9aKDHhKkv_AHkHdA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906546190</pqid></control><display><type>article</type><title>Yield Prediction for Integrated Circuits Manufacturing Through Hierarchical Bayesian Modeling of Spatial Defects</title><source>IEEE Electronic Library (IEL)</source><creator>Tao Yuan ; Ramadan, S. Z. ; Bae, S. J.</creator><creatorcontrib>Tao Yuan ; Ramadan, S. Z. ; Bae, S. J.</creatorcontrib><description>Accurate yield prediction to evaluate productivity, and to estimate production costs, is a critical issue in the highly competitive semiconductor industry. We propose yield models based on hierarchical Bayesian modeling of clustered spatial defects produced in integrated circuits (IC) manufacturing. We use spatial locations of the IC chips on the wafers as covariates, and develop four models based on Poisson regression, negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression, and zero-inflated negative binomial (ZINB) regression. Along with the hierarchical Bayesian approaches, spatial variations of defects within one wafer as well as among different wafers are effectively incorporated in the yield models. Wafermap data obtained from an industrial collaborator are used to illustrate the proposed models. The results indicate that the Poisson regression model consistently underestimates the true yield because of extraneous Poisson variation caused by defect clustering. On the contrary, NB regression, ZIP regression, and ZINB regression models provide more reliable yield estimation and prediction in real applications.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2011.2161698</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian methods ; Data models ; Hierarchical bayesian model ; Integrated circuit manufacture ; Integrated circuit modeling ; Mathematical models ; Semiconductor device modeling ; spatial defects ; Studies ; Yield estimation ; yield prediction ; zero-inflated models</subject><ispartof>IEEE transactions on reliability, 2011-12, Vol.60 (4), p.729-741</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-91811e11dde798501e91630ea842cb03233a5af1ca8d2c58964cfcf8f4c392f23</citedby><cites>FETCH-LOGICAL-c288t-91811e11dde798501e91630ea842cb03233a5af1ca8d2c58964cfcf8f4c392f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5957294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5957294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao Yuan</creatorcontrib><creatorcontrib>Ramadan, S. Z.</creatorcontrib><creatorcontrib>Bae, S. J.</creatorcontrib><title>Yield Prediction for Integrated Circuits Manufacturing Through Hierarchical Bayesian Modeling of Spatial Defects</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Accurate yield prediction to evaluate productivity, and to estimate production costs, is a critical issue in the highly competitive semiconductor industry. We propose yield models based on hierarchical Bayesian modeling of clustered spatial defects produced in integrated circuits (IC) manufacturing. We use spatial locations of the IC chips on the wafers as covariates, and develop four models based on Poisson regression, negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression, and zero-inflated negative binomial (ZINB) regression. Along with the hierarchical Bayesian approaches, spatial variations of defects within one wafer as well as among different wafers are effectively incorporated in the yield models. Wafermap data obtained from an industrial collaborator are used to illustrate the proposed models. The results indicate that the Poisson regression model consistently underestimates the true yield because of extraneous Poisson variation caused by defect clustering. On the contrary, NB regression, ZIP regression, and ZINB regression models provide more reliable yield estimation and prediction in real applications.</description><subject>Bayesian methods</subject><subject>Data models</subject><subject>Hierarchical bayesian model</subject><subject>Integrated circuit manufacture</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Semiconductor device modeling</subject><subject>spatial defects</subject><subject>Studies</subject><subject>Yield estimation</subject><subject>yield prediction</subject><subject>zero-inflated models</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqUwM7BY7Gl9TpzaI5SPVmoFKmFgioxzbl2FpNjO0H9PqlZMp1f3vHfSQ8gtsBEAU-NiNeIMYMQhh1zJMzIAIWQCEw7nZMAYyEQJri7JVQjbPmaZkgOy-3JYV_TdY-VMdG1DbevpvIm49jpiRafOm87FQJe66aw2sfOuWdNi49tuvaEzh157s3FG1_RR7zE43dBlW2F9wFpLP3Y6un75hBZNDNfkwuo64M1pDsnny3MxnSWLt9f59GGRGC5lTBRIAASoKpwoKRiggjxlqGXGzTdLeZpqoS0YLStuhFR5Zqyx0mYmVdzydEjuj3d3vv3tMMRy23a-6V-WiuUiy0GxHhofIePbEDzacufdj_b7Elh5sFoWq_JgtTxZ7Rt3x4ZDxH9aKDHhKkv_AHkHdA8</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Tao Yuan</creator><creator>Ramadan, S. Z.</creator><creator>Bae, S. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201112</creationdate><title>Yield Prediction for Integrated Circuits Manufacturing Through Hierarchical Bayesian Modeling of Spatial Defects</title><author>Tao Yuan ; Ramadan, S. Z. ; Bae, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-91811e11dde798501e91630ea842cb03233a5af1ca8d2c58964cfcf8f4c392f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Data models</topic><topic>Hierarchical bayesian model</topic><topic>Integrated circuit manufacture</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Semiconductor device modeling</topic><topic>spatial defects</topic><topic>Studies</topic><topic>Yield estimation</topic><topic>yield prediction</topic><topic>zero-inflated models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao Yuan</creatorcontrib><creatorcontrib>Ramadan, S. Z.</creatorcontrib><creatorcontrib>Bae, S. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao Yuan</au><au>Ramadan, S. Z.</au><au>Bae, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yield Prediction for Integrated Circuits Manufacturing Through Hierarchical Bayesian Modeling of Spatial Defects</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2011-12</date><risdate>2011</risdate><volume>60</volume><issue>4</issue><spage>729</spage><epage>741</epage><pages>729-741</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Accurate yield prediction to evaluate productivity, and to estimate production costs, is a critical issue in the highly competitive semiconductor industry. We propose yield models based on hierarchical Bayesian modeling of clustered spatial defects produced in integrated circuits (IC) manufacturing. We use spatial locations of the IC chips on the wafers as covariates, and develop four models based on Poisson regression, negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression, and zero-inflated negative binomial (ZINB) regression. Along with the hierarchical Bayesian approaches, spatial variations of defects within one wafer as well as among different wafers are effectively incorporated in the yield models. Wafermap data obtained from an industrial collaborator are used to illustrate the proposed models. The results indicate that the Poisson regression model consistently underestimates the true yield because of extraneous Poisson variation caused by defect clustering. On the contrary, NB regression, ZIP regression, and ZINB regression models provide more reliable yield estimation and prediction in real applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2011.2161698</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2011-12, Vol.60 (4), p.729-741 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_journals_906546190 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian methods Data models Hierarchical bayesian model Integrated circuit manufacture Integrated circuit modeling Mathematical models Semiconductor device modeling spatial defects Studies Yield estimation yield prediction zero-inflated models |
title | Yield Prediction for Integrated Circuits Manufacturing Through Hierarchical Bayesian Modeling of Spatial Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yield%20Prediction%20for%20Integrated%20Circuits%20Manufacturing%20Through%20Hierarchical%20Bayesian%20Modeling%20of%20Spatial%20Defects&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Tao%20Yuan&rft.date=2011-12&rft.volume=60&rft.issue=4&rft.spage=729&rft.epage=741&rft.pages=729-741&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2011.2161698&rft_dat=%3Cproquest_RIE%3E2522812581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906546190&rft_id=info:pmid/&rft_ieee_id=5957294&rfr_iscdi=true |