A Meta-analysis to Assess the FDA DAVP's TLOVR Algorithm in HIV Submissions

The first meta-analysis of pivotal HIV study results utilizing data from 18 clinical trials involving seven NDAs with 8,046 patients of multiple NDA submissions for the treatment of HIV infection was used to determine if we can use a simplified version of the TLOVR algorithm for accelerated approval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug information journal 2011-05, Vol.45 (3), p.291-300
Hauptverfasser: Smith, Fraser, Hammerstrom, Thomas, Soon, Greg, Zhou, Susan, Chen, Baibai, Mai, Yabing, Struble, Kimberly, Huque, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 3
container_start_page 291
container_title Drug information journal
container_volume 45
creator Smith, Fraser
Hammerstrom, Thomas
Soon, Greg
Zhou, Susan
Chen, Baibai
Mai, Yabing
Struble, Kimberly
Huque, Mohammad
description The first meta-analysis of pivotal HIV study results utilizing data from 18 clinical trials involving seven NDAs with 8,046 patients of multiple NDA submissions for the treatment of HIV infection was used to determine if we can use a simplified version of the TLOVR algorithm for accelerated approval at week 24 and possibly for traditional approval at week 48. Standardized data sets for HIV RNA viral load, demography, CD4 counts, and discontinuation were created. These raw data sets used CDISC study data tabulation model naming conventions for most of the variables. Results obtained using the TLOVR algorithm, which utilized data from every visit to consider the pattern of HIV responses, were compared to a less complicated snapshot approach that only utilized HIV RNA data at the visit of interest. Given the similarity in results between the TLOVR and snapshot approaches, it appears that correcting for intermittent spikes in HIV RNA levels with the TLOVR algorithm does not have much regulatory impact.
doi_str_mv 10.1177/009286151104500309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_905947195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_009286151104500309</sage_id><sourcerecordid>2550668312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-567eb3f0f3006dfc0acc3dc61dfde9ca02e9232cfe2cdae053fc6e3db65875c33</originalsourceid><addsrcrecordid>eNqNkMFOAjEQhjdGE4nyAp4aPXhambbbbnvcgAgRg1HkuindFpYAi53lwNu7BowHo3EuM4fv-5P5o-iKwh2ladoB0ExJKiiFRABw0CdRi1Gp4kRBcvp1pxrOozbiEprRSqRMtaLHjDy52sRmY1Z7LJHUFckQHTbXwpF-LyO9bPp8i2QyGk9fSLaaV6GsF2tSbshgOCWvu9m6RCyrDV5GZ96s0LWP-yJ6699PuoN4NH4YdrNRbLmSdSxk6mbcg-cAsvAWjLW8sJIWvnDaGmBOM86sd8wWxoHg3krHi5kUKhWW84vo-pC7DdX7zmGdL6tdaB7AXIPQSUq1aKCb3yAmBEipOGUNxQ6UDRVicD7fhnJtwj6nkH-Wm_8st5H4QcIG3sxd-I7-0-ocLTN3_zI-AASYhbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905947195</pqid></control><display><type>article</type><title>A Meta-analysis to Assess the FDA DAVP's TLOVR Algorithm in HIV Submissions</title><source>Access via SAGE</source><source>SpringerNature Journals</source><creator>Smith, Fraser ; Hammerstrom, Thomas ; Soon, Greg ; Zhou, Susan ; Chen, Baibai ; Mai, Yabing ; Struble, Kimberly ; Huque, Mohammad</creator><creatorcontrib>Smith, Fraser ; Hammerstrom, Thomas ; Soon, Greg ; Zhou, Susan ; Chen, Baibai ; Mai, Yabing ; Struble, Kimberly ; Huque, Mohammad</creatorcontrib><description>The first meta-analysis of pivotal HIV study results utilizing data from 18 clinical trials involving seven NDAs with 8,046 patients of multiple NDA submissions for the treatment of HIV infection was used to determine if we can use a simplified version of the TLOVR algorithm for accelerated approval at week 24 and possibly for traditional approval at week 48. Standardized data sets for HIV RNA viral load, demography, CD4 counts, and discontinuation were created. These raw data sets used CDISC study data tabulation model naming conventions for most of the variables. Results obtained using the TLOVR algorithm, which utilized data from every visit to consider the pattern of HIV responses, were compared to a less complicated snapshot approach that only utilized HIV RNA data at the visit of interest. Given the similarity in results between the TLOVR and snapshot approaches, it appears that correcting for intermittent spikes in HIV RNA levels with the TLOVR algorithm does not have much regulatory impact.</description><identifier>ISSN: 2168-4790</identifier><identifier>ISSN: 0092-8615</identifier><identifier>EISSN: 2168-4804</identifier><identifier>EISSN: 2164-9200</identifier><identifier>DOI: 10.1177/009286151104500309</identifier><identifier>CODEN: DGIJB9</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; CD4 antigen ; Clinical trials ; Datasets ; Demography ; Drug Safety and Pharmacovigilance ; Drug therapy ; HIV ; Human immunodeficiency virus ; Meta-analysis ; Pharmacotherapy ; Pharmacy ; Ribonucleic acid ; RNA ; Sensitivity analysis ; Statistical methods ; Statistics ; Studies ; Tabulation</subject><ispartof>Drug information journal, 2011-05, Vol.45 (3), p.291-300</ispartof><rights>2011 Drug Information Association</rights><rights>Drug Information Association, Inc 2011</rights><rights>Drug Information Association, Inc 2011.</rights><rights>Copyright Drug Information Association May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-567eb3f0f3006dfc0acc3dc61dfde9ca02e9232cfe2cdae053fc6e3db65875c33</citedby><cites>FETCH-LOGICAL-c386t-567eb3f0f3006dfc0acc3dc61dfde9ca02e9232cfe2cdae053fc6e3db65875c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/009286151104500309$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/009286151104500309$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Smith, Fraser</creatorcontrib><creatorcontrib>Hammerstrom, Thomas</creatorcontrib><creatorcontrib>Soon, Greg</creatorcontrib><creatorcontrib>Zhou, Susan</creatorcontrib><creatorcontrib>Chen, Baibai</creatorcontrib><creatorcontrib>Mai, Yabing</creatorcontrib><creatorcontrib>Struble, Kimberly</creatorcontrib><creatorcontrib>Huque, Mohammad</creatorcontrib><title>A Meta-analysis to Assess the FDA DAVP's TLOVR Algorithm in HIV Submissions</title><title>Drug information journal</title><addtitle>Ther Innov Regul Sci</addtitle><description>The first meta-analysis of pivotal HIV study results utilizing data from 18 clinical trials involving seven NDAs with 8,046 patients of multiple NDA submissions for the treatment of HIV infection was used to determine if we can use a simplified version of the TLOVR algorithm for accelerated approval at week 24 and possibly for traditional approval at week 48. Standardized data sets for HIV RNA viral load, demography, CD4 counts, and discontinuation were created. These raw data sets used CDISC study data tabulation model naming conventions for most of the variables. Results obtained using the TLOVR algorithm, which utilized data from every visit to consider the pattern of HIV responses, were compared to a less complicated snapshot approach that only utilized HIV RNA data at the visit of interest. Given the similarity in results between the TLOVR and snapshot approaches, it appears that correcting for intermittent spikes in HIV RNA levels with the TLOVR algorithm does not have much regulatory impact.</description><subject>Algorithms</subject><subject>CD4 antigen</subject><subject>Clinical trials</subject><subject>Datasets</subject><subject>Demography</subject><subject>Drug Safety and Pharmacovigilance</subject><subject>Drug therapy</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Meta-analysis</subject><subject>Pharmacotherapy</subject><subject>Pharmacy</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><subject>Tabulation</subject><issn>2168-4790</issn><issn>0092-8615</issn><issn>2168-4804</issn><issn>2164-9200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkMFOAjEQhjdGE4nyAp4aPXhambbbbnvcgAgRg1HkuindFpYAi53lwNu7BowHo3EuM4fv-5P5o-iKwh2ladoB0ExJKiiFRABw0CdRi1Gp4kRBcvp1pxrOozbiEprRSqRMtaLHjDy52sRmY1Z7LJHUFckQHTbXwpF-LyO9bPp8i2QyGk9fSLaaV6GsF2tSbshgOCWvu9m6RCyrDV5GZ96s0LWP-yJ6699PuoN4NH4YdrNRbLmSdSxk6mbcg-cAsvAWjLW8sJIWvnDaGmBOM86sd8wWxoHg3krHi5kUKhWW84vo-pC7DdX7zmGdL6tdaB7AXIPQSUq1aKCb3yAmBEipOGUNxQ6UDRVicD7fhnJtwj6nkH-Wm_8st5H4QcIG3sxd-I7-0-ocLTN3_zI-AASYhbY</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Smith, Fraser</creator><creator>Hammerstrom, Thomas</creator><creator>Soon, Greg</creator><creator>Zhou, Susan</creator><creator>Chen, Baibai</creator><creator>Mai, Yabing</creator><creator>Struble, Kimberly</creator><creator>Huque, Mohammad</creator><general>SAGE Publications</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110501</creationdate><title>A Meta-analysis to Assess the FDA DAVP's TLOVR Algorithm in HIV Submissions</title><author>Smith, Fraser ; Hammerstrom, Thomas ; Soon, Greg ; Zhou, Susan ; Chen, Baibai ; Mai, Yabing ; Struble, Kimberly ; Huque, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-567eb3f0f3006dfc0acc3dc61dfde9ca02e9232cfe2cdae053fc6e3db65875c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>CD4 antigen</topic><topic>Clinical trials</topic><topic>Datasets</topic><topic>Demography</topic><topic>Drug Safety and Pharmacovigilance</topic><topic>Drug therapy</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Meta-analysis</topic><topic>Pharmacotherapy</topic><topic>Pharmacy</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><topic>Tabulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Fraser</creatorcontrib><creatorcontrib>Hammerstrom, Thomas</creatorcontrib><creatorcontrib>Soon, Greg</creatorcontrib><creatorcontrib>Zhou, Susan</creatorcontrib><creatorcontrib>Chen, Baibai</creatorcontrib><creatorcontrib>Mai, Yabing</creatorcontrib><creatorcontrib>Struble, Kimberly</creatorcontrib><creatorcontrib>Huque, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Drug information journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Fraser</au><au>Hammerstrom, Thomas</au><au>Soon, Greg</au><au>Zhou, Susan</au><au>Chen, Baibai</au><au>Mai, Yabing</au><au>Struble, Kimberly</au><au>Huque, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Meta-analysis to Assess the FDA DAVP's TLOVR Algorithm in HIV Submissions</atitle><jtitle>Drug information journal</jtitle><stitle>Ther Innov Regul Sci</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>45</volume><issue>3</issue><spage>291</spage><epage>300</epage><pages>291-300</pages><issn>2168-4790</issn><issn>0092-8615</issn><eissn>2168-4804</eissn><eissn>2164-9200</eissn><coden>DGIJB9</coden><abstract>The first meta-analysis of pivotal HIV study results utilizing data from 18 clinical trials involving seven NDAs with 8,046 patients of multiple NDA submissions for the treatment of HIV infection was used to determine if we can use a simplified version of the TLOVR algorithm for accelerated approval at week 24 and possibly for traditional approval at week 48. Standardized data sets for HIV RNA viral load, demography, CD4 counts, and discontinuation were created. These raw data sets used CDISC study data tabulation model naming conventions for most of the variables. Results obtained using the TLOVR algorithm, which utilized data from every visit to consider the pattern of HIV responses, were compared to a less complicated snapshot approach that only utilized HIV RNA data at the visit of interest. Given the similarity in results between the TLOVR and snapshot approaches, it appears that correcting for intermittent spikes in HIV RNA levels with the TLOVR algorithm does not have much regulatory impact.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/009286151104500309</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2168-4790
ispartof Drug information journal, 2011-05, Vol.45 (3), p.291-300
issn 2168-4790
0092-8615
2168-4804
2164-9200
language eng
recordid cdi_proquest_journals_905947195
source Access via SAGE; SpringerNature Journals
subjects Algorithms
CD4 antigen
Clinical trials
Datasets
Demography
Drug Safety and Pharmacovigilance
Drug therapy
HIV
Human immunodeficiency virus
Meta-analysis
Pharmacotherapy
Pharmacy
Ribonucleic acid
RNA
Sensitivity analysis
Statistical methods
Statistics
Studies
Tabulation
title A Meta-analysis to Assess the FDA DAVP's TLOVR Algorithm in HIV Submissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Meta-analysis%20to%20Assess%20the%20FDA%20DAVP's%20TLOVR%20Algorithm%20in%20HIV%20Submissions&rft.jtitle=Drug%20information%20journal&rft.au=Smith,%20Fraser&rft.date=2011-05-01&rft.volume=45&rft.issue=3&rft.spage=291&rft.epage=300&rft.pages=291-300&rft.issn=2168-4790&rft.eissn=2168-4804&rft.coden=DGIJB9&rft_id=info:doi/10.1177/009286151104500309&rft_dat=%3Cproquest_cross%3E2550668312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905947195&rft_id=info:pmid/&rft_sage_id=10.1177_009286151104500309&rfr_iscdi=true