Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits

In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2011-12, Vol.30 (12), p.1814-1827
Hauptverfasser: Wangyang Zhang, Xin Li, Liu, F., Acar, E., Rutenbar, R. A., Blanton, R. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 12
container_start_page 1814
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 30
creator Wangyang Zhang
Xin Li
Liu, F.
Acar, E.
Rutenbar, R. A.
Blanton, R. D.
description In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.
doi_str_mv 10.1109/TCAD.2011.2164536
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_905205621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6071091</ieee_id><sourcerecordid>963860801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</originalsourceid><addsrcrecordid>eNpdkEtr3DAQgEVIoZu0P6DkInLpyZsZS_Ijt8V5wtIW8rgKWR63SrxWIsmE5NfHy4YechoYvm8YPsZ-ICwRoT65bVZnyxwQlzkWUolijy2wFmUmUeE-W0BeVhlACV_ZQYwPAChVXi_Y5t6FNJmB_wm-pVO-4jfJJBeTs_PyIpgNvfjwyHsf-Nq_ZI2Pid-4wVk_8uafCcYmCu5tduaF7_kvM_o4u8Svx0R_g0nU8cYFO7kUv7EvvRkiff-Yh-zu4vy2ucrWvy-vm9U6s7LClFWChGw71aHtRC2lta0pa2kLKUXdF4B9KVWLoEzVUanatgJFoutV3oFsy04csp-7u0_BP08Uk964aGkYzEh-irouRFVABTiTx5_IBz-FcX5O16ByUEW-hXAH2eBjDNTrp-A2JrxqBL3Nr7f59Ta__sg_O0c7xxHRf76AcsZRvAPIX4FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905205621</pqid></control><display><type>article</type><title>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R. A. ; Blanton, R. D.</creator><creatorcontrib>Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R. A. ; Blanton, R. D.</creatorcontrib><description>In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2011.2164536</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Characterization ; Compressed sensing ; Frequency domain analysis ; integrated circuit ; Integrated circuit reliability ; Integrated circuits ; Interpolation ; Monitors ; Nanocomposites ; Nanomaterials ; Nanostructure ; process variation ; Sampling ; Silicon ; Statistical analysis ; Virtual manufacturing</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2011-12, Vol.30 (12), p.1814-1827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</citedby><cites>FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6071091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6071091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><creatorcontrib>Blanton, R. D.</creatorcontrib><title>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.</description><subject>Characterization</subject><subject>Compressed sensing</subject><subject>Frequency domain analysis</subject><subject>integrated circuit</subject><subject>Integrated circuit reliability</subject><subject>Integrated circuits</subject><subject>Interpolation</subject><subject>Monitors</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>process variation</subject><subject>Sampling</subject><subject>Silicon</subject><subject>Statistical analysis</subject><subject>Virtual manufacturing</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtr3DAQgEVIoZu0P6DkInLpyZsZS_Ijt8V5wtIW8rgKWR63SrxWIsmE5NfHy4YechoYvm8YPsZ-ICwRoT65bVZnyxwQlzkWUolijy2wFmUmUeE-W0BeVhlACV_ZQYwPAChVXi_Y5t6FNJmB_wm-pVO-4jfJJBeTs_PyIpgNvfjwyHsf-Nq_ZI2Pid-4wVk_8uafCcYmCu5tduaF7_kvM_o4u8Svx0R_g0nU8cYFO7kUv7EvvRkiff-Yh-zu4vy2ucrWvy-vm9U6s7LClFWChGw71aHtRC2lta0pa2kLKUXdF4B9KVWLoEzVUanatgJFoutV3oFsy04csp-7u0_BP08Uk964aGkYzEh-irouRFVABTiTx5_IBz-FcX5O16ByUEW-hXAH2eBjDNTrp-A2JrxqBL3Nr7f59Ta__sg_O0c7xxHRf76AcsZRvAPIX4FA</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Wangyang Zhang</creator><creator>Xin Li</creator><creator>Liu, F.</creator><creator>Acar, E.</creator><creator>Rutenbar, R. A.</creator><creator>Blanton, R. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201112</creationdate><title>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</title><author>Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R. A. ; Blanton, R. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization</topic><topic>Compressed sensing</topic><topic>Frequency domain analysis</topic><topic>integrated circuit</topic><topic>Integrated circuit reliability</topic><topic>Integrated circuits</topic><topic>Interpolation</topic><topic>Monitors</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>process variation</topic><topic>Sampling</topic><topic>Silicon</topic><topic>Statistical analysis</topic><topic>Virtual manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><creatorcontrib>Blanton, R. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wangyang Zhang</au><au>Xin Li</au><au>Liu, F.</au><au>Acar, E.</au><au>Rutenbar, R. A.</au><au>Blanton, R. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2011-12</date><risdate>2011</risdate><volume>30</volume><issue>12</issue><spage>1814</spage><epage>1827</epage><pages>1814-1827</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2011.2164536</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2011-12, Vol.30 (12), p.1814-1827
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_905205621
source IEEE Electronic Library (IEL)
subjects Characterization
Compressed sensing
Frequency domain analysis
integrated circuit
Integrated circuit reliability
Integrated circuits
Interpolation
Monitors
Nanocomposites
Nanomaterials
Nanostructure
process variation
Sampling
Silicon
Statistical analysis
Virtual manufacturing
title Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Probe:%20A%20Statistical%20Framework%20for%20Low-Cost%20Silicon%20Characterization%20of%20Nanoscale%20Integrated%20Circuits&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Wangyang%20Zhang&rft.date=2011-12&rft.volume=30&rft.issue=12&rft.spage=1814&rft.epage=1827&rft.pages=1814-1827&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2011.2164536&rft_dat=%3Cproquest_RIE%3E963860801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905205621&rft_id=info:pmid/&rft_ieee_id=6071091&rfr_iscdi=true