Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits
In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2011-12, Vol.30 (12), p.1814-1827 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 12 |
container_start_page | 1814 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 30 |
creator | Wangyang Zhang Xin Li Liu, F. Acar, E. Rutenbar, R. A. Blanton, R. D. |
description | In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation. |
doi_str_mv | 10.1109/TCAD.2011.2164536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_905205621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6071091</ieee_id><sourcerecordid>963860801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</originalsourceid><addsrcrecordid>eNpdkEtr3DAQgEVIoZu0P6DkInLpyZsZS_Ijt8V5wtIW8rgKWR63SrxWIsmE5NfHy4YechoYvm8YPsZ-ICwRoT65bVZnyxwQlzkWUolijy2wFmUmUeE-W0BeVhlACV_ZQYwPAChVXi_Y5t6FNJmB_wm-pVO-4jfJJBeTs_PyIpgNvfjwyHsf-Nq_ZI2Pid-4wVk_8uafCcYmCu5tduaF7_kvM_o4u8Svx0R_g0nU8cYFO7kUv7EvvRkiff-Yh-zu4vy2ucrWvy-vm9U6s7LClFWChGw71aHtRC2lta0pa2kLKUXdF4B9KVWLoEzVUanatgJFoutV3oFsy04csp-7u0_BP08Uk964aGkYzEh-irouRFVABTiTx5_IBz-FcX5O16ByUEW-hXAH2eBjDNTrp-A2JrxqBL3Nr7f59Ta__sg_O0c7xxHRf76AcsZRvAPIX4FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905205621</pqid></control><display><type>article</type><title>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R. A. ; Blanton, R. D.</creator><creatorcontrib>Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R. A. ; Blanton, R. D.</creatorcontrib><description>In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2011.2164536</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Characterization ; Compressed sensing ; Frequency domain analysis ; integrated circuit ; Integrated circuit reliability ; Integrated circuits ; Interpolation ; Monitors ; Nanocomposites ; Nanomaterials ; Nanostructure ; process variation ; Sampling ; Silicon ; Statistical analysis ; Virtual manufacturing</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2011-12, Vol.30 (12), p.1814-1827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</citedby><cites>FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6071091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6071091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><creatorcontrib>Blanton, R. D.</creatorcontrib><title>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.</description><subject>Characterization</subject><subject>Compressed sensing</subject><subject>Frequency domain analysis</subject><subject>integrated circuit</subject><subject>Integrated circuit reliability</subject><subject>Integrated circuits</subject><subject>Interpolation</subject><subject>Monitors</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>process variation</subject><subject>Sampling</subject><subject>Silicon</subject><subject>Statistical analysis</subject><subject>Virtual manufacturing</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtr3DAQgEVIoZu0P6DkInLpyZsZS_Ijt8V5wtIW8rgKWR63SrxWIsmE5NfHy4YechoYvm8YPsZ-ICwRoT65bVZnyxwQlzkWUolijy2wFmUmUeE-W0BeVhlACV_ZQYwPAChVXi_Y5t6FNJmB_wm-pVO-4jfJJBeTs_PyIpgNvfjwyHsf-Nq_ZI2Pid-4wVk_8uafCcYmCu5tduaF7_kvM_o4u8Svx0R_g0nU8cYFO7kUv7EvvRkiff-Yh-zu4vy2ucrWvy-vm9U6s7LClFWChGw71aHtRC2lta0pa2kLKUXdF4B9KVWLoEzVUanatgJFoutV3oFsy04csp-7u0_BP08Uk964aGkYzEh-irouRFVABTiTx5_IBz-FcX5O16ByUEW-hXAH2eBjDNTrp-A2JrxqBL3Nr7f59Ta__sg_O0c7xxHRf76AcsZRvAPIX4FA</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Wangyang Zhang</creator><creator>Xin Li</creator><creator>Liu, F.</creator><creator>Acar, E.</creator><creator>Rutenbar, R. A.</creator><creator>Blanton, R. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201112</creationdate><title>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</title><author>Wangyang Zhang ; Xin Li ; Liu, F. ; Acar, E. ; Rutenbar, R. A. ; Blanton, R. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-83e34bd5d1cd3944ccba794c64439f601f745b105a8de75bb805e3df52d04b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization</topic><topic>Compressed sensing</topic><topic>Frequency domain analysis</topic><topic>integrated circuit</topic><topic>Integrated circuit reliability</topic><topic>Integrated circuits</topic><topic>Interpolation</topic><topic>Monitors</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>process variation</topic><topic>Sampling</topic><topic>Silicon</topic><topic>Statistical analysis</topic><topic>Virtual manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wangyang Zhang</creatorcontrib><creatorcontrib>Xin Li</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Acar, E.</creatorcontrib><creatorcontrib>Rutenbar, R. A.</creatorcontrib><creatorcontrib>Blanton, R. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wangyang Zhang</au><au>Xin Li</au><au>Liu, F.</au><au>Acar, E.</au><au>Rutenbar, R. A.</au><au>Blanton, R. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2011-12</date><risdate>2011</risdate><volume>30</volume><issue>12</issue><spage>1814</spage><epage>1827</epage><pages>1814-1827</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>In this paper, we propose a new technique, referred to as virtual probe (VP), to efficiently measure, characterize, and monitor spatially-correlated inter-die and/or intra-die variations in nanoscale manufacturing process. VP exploits recent breakthroughs in compressed sensing to accurately predict spatial variations from an exceptionally small set of measurement data, thereby reducing the cost of silicon characterization. By exploring the underlying sparse pattern in spatial frequency domain, VP achieves substantially lower sampling frequency than the well-known Nyquist rate. In addition, VP is formulated as a linear programming problem and, therefore, can be solved both robustly and efficiently. Our industrial measurement data demonstrate the superior accuracy of VP over several traditional methods, including 2-D interpolation, Kriging prediction, and k-LSE estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2011.2164536</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2011-12, Vol.30 (12), p.1814-1827 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_905205621 |
source | IEEE Electronic Library (IEL) |
subjects | Characterization Compressed sensing Frequency domain analysis integrated circuit Integrated circuit reliability Integrated circuits Interpolation Monitors Nanocomposites Nanomaterials Nanostructure process variation Sampling Silicon Statistical analysis Virtual manufacturing |
title | Virtual Probe: A Statistical Framework for Low-Cost Silicon Characterization of Nanoscale Integrated Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Probe:%20A%20Statistical%20Framework%20for%20Low-Cost%20Silicon%20Characterization%20of%20Nanoscale%20Integrated%20Circuits&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Wangyang%20Zhang&rft.date=2011-12&rft.volume=30&rft.issue=12&rft.spage=1814&rft.epage=1827&rft.pages=1814-1827&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2011.2164536&rft_dat=%3Cproquest_RIE%3E963860801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905205621&rft_id=info:pmid/&rft_ieee_id=6071091&rfr_iscdi=true |