Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites

Poly lactic acid (PLA)/Banana fiber (BF) biocomposites were fabricated employing melt blending technique followed by compression molding. BF were surface‐treated by NaOH and various silanes viz. 3‐aminopropyltriethoxysilane (APS) and bis‐(3‐triethoxy silyl propyl) tetrasulfane (Si69) to improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2011-11, Vol.32 (11), p.1689-1700
Hauptverfasser: Jandas, P.J., Mohanty, S., Nayak, S.K., Srivastava, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1700
container_issue 11
container_start_page 1689
container_title Polymer composites
container_volume 32
creator Jandas, P.J.
Mohanty, S.
Nayak, S.K.
Srivastava, H.
description Poly lactic acid (PLA)/Banana fiber (BF) biocomposites were fabricated employing melt blending technique followed by compression molding. BF were surface‐treated by NaOH and various silanes viz. 3‐aminopropyltriethoxysilane (APS) and bis‐(3‐triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Mechanical tests revealed an increase of tensile strength to the tune 136% and impact strength to 49% as compared with the untreated biocomposite. Thermal properties of the composites have been evaluated using DSC and TGA. DSC thermograms revealed an increase in the melting transitions thus revealing effective fiber/matrix interface. The thermal stability in the biocomposites also increased in case of banana fiber treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values in the silane treated biocomposites. Biodegradation studies in the biocomposites have been investigated in B. cepacia medium through morphological and weight loss studies. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers
doi_str_mv 10.1002/pc.21165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_903537447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509394871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-2805861e967e1833c4af838ea5a2a38e702c24a40512a2e887fcb77127257b083</originalsourceid><addsrcrecordid>eNp1kNtqVDEUhjei4NgKPkIQBC_cbQ47h31ZhtoK09qLasGbsHZmxabOPjTJoPMCfW4znWnBC1kX_yJ8fEn-qnrH6BGjlB9P7ogzpuSLasZkY2oqVfuymlGueW1Eq19Xb1K6KyRTSsyqh1Pv0WUyepLW0YNDkiNC7nHIaXvawVCG-NBhJONAenS3MAQHq08k32LstwsMS9KFcYk_IyyhC6uQN2SK44QxB3z0XC1Ojv9xFd6N_TSmkDEdVq88rBK-3edB9e3z6fX8vF58PfsyP1nUTigqa26oNIphqzQyI4RrwBthECRwKKkpd7yBhkrGgaMx2rtOa1Y-L3VHjTio3u-85XH3a0zZ3o3rOJQrbUuFFLppdIE-7iAXx5QiejvF0EPcWEbttmQ7OftYckE_7H2QSiU-wuBCeuZ5sTVcscLVO-53WOHmvz57NX_y7vmQMv555iH-skoLLe3N5Zn9fnHd3pgf0jLxF9KMmQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903537447</pqid></control><display><type>article</type><title>Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites</title><source>Wiley Journals</source><creator>Jandas, P.J. ; Mohanty, S. ; Nayak, S.K. ; Srivastava, H.</creator><creatorcontrib>Jandas, P.J. ; Mohanty, S. ; Nayak, S.K. ; Srivastava, H.</creatorcontrib><description>Poly lactic acid (PLA)/Banana fiber (BF) biocomposites were fabricated employing melt blending technique followed by compression molding. BF were surface‐treated by NaOH and various silanes viz. 3‐aminopropyltriethoxysilane (APS) and bis‐(3‐triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Mechanical tests revealed an increase of tensile strength to the tune 136% and impact strength to 49% as compared with the untreated biocomposite. Thermal properties of the composites have been evaluated using DSC and TGA. DSC thermograms revealed an increase in the melting transitions thus revealing effective fiber/matrix interface. The thermal stability in the biocomposites also increased in case of banana fiber treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values in the silane treated biocomposites. Biodegradation studies in the biocomposites have been investigated in B. cepacia medium through morphological and weight loss studies. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.21165</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer composites, 2011-11, Vol.32 (11), p.1689-1700</ispartof><rights>Copyright © 2011 Society of Plastics Engineers</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-2805861e967e1833c4af838ea5a2a38e702c24a40512a2e887fcb77127257b083</citedby><cites>FETCH-LOGICAL-c3605-2805861e967e1833c4af838ea5a2a38e702c24a40512a2e887fcb77127257b083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.21165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.21165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24734261$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jandas, P.J.</creatorcontrib><creatorcontrib>Mohanty, S.</creatorcontrib><creatorcontrib>Nayak, S.K.</creatorcontrib><creatorcontrib>Srivastava, H.</creatorcontrib><title>Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>Poly lactic acid (PLA)/Banana fiber (BF) biocomposites were fabricated employing melt blending technique followed by compression molding. BF were surface‐treated by NaOH and various silanes viz. 3‐aminopropyltriethoxysilane (APS) and bis‐(3‐triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Mechanical tests revealed an increase of tensile strength to the tune 136% and impact strength to 49% as compared with the untreated biocomposite. Thermal properties of the composites have been evaluated using DSC and TGA. DSC thermograms revealed an increase in the melting transitions thus revealing effective fiber/matrix interface. The thermal stability in the biocomposites also increased in case of banana fiber treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values in the silane treated biocomposites. Biodegradation studies in the biocomposites have been investigated in B. cepacia medium through morphological and weight loss studies. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kNtqVDEUhjei4NgKPkIQBC_cbQ47h31ZhtoK09qLasGbsHZmxabOPjTJoPMCfW4znWnBC1kX_yJ8fEn-qnrH6BGjlB9P7ogzpuSLasZkY2oqVfuymlGueW1Eq19Xb1K6KyRTSsyqh1Pv0WUyepLW0YNDkiNC7nHIaXvawVCG-NBhJONAenS3MAQHq08k32LstwsMS9KFcYk_IyyhC6uQN2SK44QxB3z0XC1Ojv9xFd6N_TSmkDEdVq88rBK-3edB9e3z6fX8vF58PfsyP1nUTigqa26oNIphqzQyI4RrwBthECRwKKkpd7yBhkrGgaMx2rtOa1Y-L3VHjTio3u-85XH3a0zZ3o3rOJQrbUuFFLppdIE-7iAXx5QiejvF0EPcWEbttmQ7OftYckE_7H2QSiU-wuBCeuZ5sTVcscLVO-53WOHmvz57NX_y7vmQMv555iH-skoLLe3N5Zn9fnHd3pgf0jLxF9KMmQI</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Jandas, P.J.</creator><creator>Mohanty, S.</creator><creator>Nayak, S.K.</creator><creator>Srivastava, H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201111</creationdate><title>Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites</title><author>Jandas, P.J. ; Mohanty, S. ; Nayak, S.K. ; Srivastava, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-2805861e967e1833c4af838ea5a2a38e702c24a40512a2e887fcb77127257b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jandas, P.J.</creatorcontrib><creatorcontrib>Mohanty, S.</creatorcontrib><creatorcontrib>Nayak, S.K.</creatorcontrib><creatorcontrib>Srivastava, H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jandas, P.J.</au><au>Mohanty, S.</au><au>Nayak, S.K.</au><au>Srivastava, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2011-11</date><risdate>2011</risdate><volume>32</volume><issue>11</issue><spage>1689</spage><epage>1700</epage><pages>1689-1700</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Poly lactic acid (PLA)/Banana fiber (BF) biocomposites were fabricated employing melt blending technique followed by compression molding. BF were surface‐treated by NaOH and various silanes viz. 3‐aminopropyltriethoxysilane (APS) and bis‐(3‐triethoxy silyl propyl) tetrasulfane (Si69) to improve the compatibility of the fibers within the matrix polymer. Mechanical tests revealed an increase of tensile strength to the tune 136% and impact strength to 49% as compared with the untreated biocomposite. Thermal properties of the composites have been evaluated using DSC and TGA. DSC thermograms revealed an increase in the melting transitions thus revealing effective fiber/matrix interface. The thermal stability in the biocomposites also increased in case of banana fiber treated with Si69. Viscoelastic measurements using DMA confirmed an increase of storage modulus and low damping values in the silane treated biocomposites. Biodegradation studies in the biocomposites have been investigated in B. cepacia medium through morphological and weight loss studies. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.21165</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2011-11, Vol.32 (11), p.1689-1700
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_903537447
source Wiley Journals
subjects Applied sciences
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Polymer industry, paints, wood
Technology of polymers
title Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surface%20treatments%20of%20banana%20fiber%20on%20mechanical,%20thermal,%20and%20biodegradability%20properties%20of%20PLA/banana%20fiber%20biocomposites&rft.jtitle=Polymer%20composites&rft.au=Jandas,%20P.J.&rft.date=2011-11&rft.volume=32&rft.issue=11&rft.spage=1689&rft.epage=1700&rft.pages=1689-1700&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.21165&rft_dat=%3Cproquest_cross%3E2509394871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903537447&rft_id=info:pmid/&rfr_iscdi=true