Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates

Carbon/epoxy laminates interleaved with laboratory scale electrospun Nylon 66 nanofibrilmat and spunbonded nonwoven mats were investigated. The effect of the nanoscale fibers on the fracture toughness of the composite under pure Mode I loading was evaluated. It was shown that the nanofibrilmat is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2011-11, Vol.32 (11), p.1781-1789
Hauptverfasser: Hamer, Shay, Leibovich, Herman, Green, Anthony, Intrater, Ron, Avrahami, Ron, Zussman, Eyal, Siegmann, Arnon, Sherman, Dov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1789
container_issue 11
container_start_page 1781
container_title Polymer composites
container_volume 32
creator Hamer, Shay
Leibovich, Herman
Green, Anthony
Intrater, Ron
Avrahami, Ron
Zussman, Eyal
Siegmann, Arnon
Sherman, Dov
description Carbon/epoxy laminates interleaved with laboratory scale electrospun Nylon 66 nanofibrilmat and spunbonded nonwoven mats were investigated. The effect of the nanoscale fibers on the fracture toughness of the composite under pure Mode I loading was evaluated. It was shown that the nanofibrilmat is responsible for a major interlaminar fracture toughness improvement, as high as 255–322%, compared to a noninterleaved carbon/epoxy reference laminate. We further studied the improvement mechanism of the electrospun nanofibrilmat compared to a commercial spunbonded nonwoven Nylon 66 mat. A combination of two interlayer fracture mechanisms responsible for the toughness improvement is suggested: the first is related to the high energy dissipated by bridged thermoplastic nanofibers and the second is attributed to the generation of a plastic zone near the crack tip. The interlaminar fracture mechanisms of both electrospun nanofibrilmat and the nonwoven mat interleaving was analyzed and discussed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers
doi_str_mv 10.1002/pc.21210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_903537384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509395001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3970-175d74479a3199d862ec4b8b2f67dc15fee22395a76bd14ac382827a293c5d613</originalsourceid><addsrcrecordid>eNp10E1PwyAAxnFiNHFOEz8CMTHx0o2XAu1Rp84l8-WgWbILoZRqZwcVWt2-vdXN3Txx-fGHPACcYjTACJFhrQcEE4z2QA-zOIkQ4-k-6CEiSJTQVByCoxAWncSc0x7Q9y43cAJL2xhfqWVplYeFV7ppvYGNa1_frAkBugI-rCtnIefQKuuKMvNltVTN9qZRnyaHWvnM2aGp3WoNN7XGhGNwUKgqmJPt2QcvtzfPo7to-jiejC6nke7-hSIsWC7iWKSK4jTNE06MjrMkIwUXucasMIYQmjIleJbjWGmakIQIRVKqWc4x7YOzTbf27qM1oZEL13rbPSlTRBkVNIk7dLFB2rsQvClk7cul8muJkfxZUNZa_i7Y0fNtTwWtqm4Vq8uw8yQWNO5m7Vy0cV9lZdb_9uTT6K-79WVozGrnlX-XXFDB5OxhLOfz2fUcX2HJ6DeXY40n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903537384</pqid></control><display><type>article</type><title>Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hamer, Shay ; Leibovich, Herman ; Green, Anthony ; Intrater, Ron ; Avrahami, Ron ; Zussman, Eyal ; Siegmann, Arnon ; Sherman, Dov</creator><creatorcontrib>Hamer, Shay ; Leibovich, Herman ; Green, Anthony ; Intrater, Ron ; Avrahami, Ron ; Zussman, Eyal ; Siegmann, Arnon ; Sherman, Dov</creatorcontrib><description>Carbon/epoxy laminates interleaved with laboratory scale electrospun Nylon 66 nanofibrilmat and spunbonded nonwoven mats were investigated. The effect of the nanoscale fibers on the fracture toughness of the composite under pure Mode I loading was evaluated. It was shown that the nanofibrilmat is responsible for a major interlaminar fracture toughness improvement, as high as 255–322%, compared to a noninterleaved carbon/epoxy reference laminate. We further studied the improvement mechanism of the electrospun nanofibrilmat compared to a commercial spunbonded nonwoven Nylon 66 mat. A combination of two interlayer fracture mechanisms responsible for the toughness improvement is suggested: the first is related to the high energy dissipated by bridged thermoplastic nanofibers and the second is attributed to the generation of a plastic zone near the crack tip. The interlaminar fracture mechanisms of both electrospun nanofibrilmat and the nonwoven mat interleaving was analyzed and discussed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.21210</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Laminates ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer composites, 2011-11, Vol.32 (11), p.1781-1789</ispartof><rights>Copyright © 2011 Society of Plastics Engineers</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3970-175d74479a3199d862ec4b8b2f67dc15fee22395a76bd14ac382827a293c5d613</citedby><cites>FETCH-LOGICAL-c3970-175d74479a3199d862ec4b8b2f67dc15fee22395a76bd14ac382827a293c5d613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.21210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.21210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24734272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamer, Shay</creatorcontrib><creatorcontrib>Leibovich, Herman</creatorcontrib><creatorcontrib>Green, Anthony</creatorcontrib><creatorcontrib>Intrater, Ron</creatorcontrib><creatorcontrib>Avrahami, Ron</creatorcontrib><creatorcontrib>Zussman, Eyal</creatorcontrib><creatorcontrib>Siegmann, Arnon</creatorcontrib><creatorcontrib>Sherman, Dov</creatorcontrib><title>Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates</title><title>Polymer composites</title><addtitle>Polym Compos</addtitle><description>Carbon/epoxy laminates interleaved with laboratory scale electrospun Nylon 66 nanofibrilmat and spunbonded nonwoven mats were investigated. The effect of the nanoscale fibers on the fracture toughness of the composite under pure Mode I loading was evaluated. It was shown that the nanofibrilmat is responsible for a major interlaminar fracture toughness improvement, as high as 255–322%, compared to a noninterleaved carbon/epoxy reference laminate. We further studied the improvement mechanism of the electrospun nanofibrilmat compared to a commercial spunbonded nonwoven Nylon 66 mat. A combination of two interlayer fracture mechanisms responsible for the toughness improvement is suggested: the first is related to the high energy dissipated by bridged thermoplastic nanofibers and the second is attributed to the generation of a plastic zone near the crack tip. The interlaminar fracture mechanisms of both electrospun nanofibrilmat and the nonwoven mat interleaving was analyzed and discussed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Laminates</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp10E1PwyAAxnFiNHFOEz8CMTHx0o2XAu1Rp84l8-WgWbILoZRqZwcVWt2-vdXN3Txx-fGHPACcYjTACJFhrQcEE4z2QA-zOIkQ4-k-6CEiSJTQVByCoxAWncSc0x7Q9y43cAJL2xhfqWVplYeFV7ppvYGNa1_frAkBugI-rCtnIefQKuuKMvNltVTN9qZRnyaHWvnM2aGp3WoNN7XGhGNwUKgqmJPt2QcvtzfPo7to-jiejC6nke7-hSIsWC7iWKSK4jTNE06MjrMkIwUXucasMIYQmjIleJbjWGmakIQIRVKqWc4x7YOzTbf27qM1oZEL13rbPSlTRBkVNIk7dLFB2rsQvClk7cul8muJkfxZUNZa_i7Y0fNtTwWtqm4Vq8uw8yQWNO5m7Vy0cV9lZdb_9uTT6K-79WVozGrnlX-XXFDB5OxhLOfz2fUcX2HJ6DeXY40n</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Hamer, Shay</creator><creator>Leibovich, Herman</creator><creator>Green, Anthony</creator><creator>Intrater, Ron</creator><creator>Avrahami, Ron</creator><creator>Zussman, Eyal</creator><creator>Siegmann, Arnon</creator><creator>Sherman, Dov</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201111</creationdate><title>Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates</title><author>Hamer, Shay ; Leibovich, Herman ; Green, Anthony ; Intrater, Ron ; Avrahami, Ron ; Zussman, Eyal ; Siegmann, Arnon ; Sherman, Dov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3970-175d74479a3199d862ec4b8b2f67dc15fee22395a76bd14ac382827a293c5d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Laminates</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamer, Shay</creatorcontrib><creatorcontrib>Leibovich, Herman</creatorcontrib><creatorcontrib>Green, Anthony</creatorcontrib><creatorcontrib>Intrater, Ron</creatorcontrib><creatorcontrib>Avrahami, Ron</creatorcontrib><creatorcontrib>Zussman, Eyal</creatorcontrib><creatorcontrib>Siegmann, Arnon</creatorcontrib><creatorcontrib>Sherman, Dov</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamer, Shay</au><au>Leibovich, Herman</au><au>Green, Anthony</au><au>Intrater, Ron</au><au>Avrahami, Ron</au><au>Zussman, Eyal</au><au>Siegmann, Arnon</au><au>Sherman, Dov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym Compos</addtitle><date>2011-11</date><risdate>2011</risdate><volume>32</volume><issue>11</issue><spage>1781</spage><epage>1789</epage><pages>1781-1789</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Carbon/epoxy laminates interleaved with laboratory scale electrospun Nylon 66 nanofibrilmat and spunbonded nonwoven mats were investigated. The effect of the nanoscale fibers on the fracture toughness of the composite under pure Mode I loading was evaluated. It was shown that the nanofibrilmat is responsible for a major interlaminar fracture toughness improvement, as high as 255–322%, compared to a noninterleaved carbon/epoxy reference laminate. We further studied the improvement mechanism of the electrospun nanofibrilmat compared to a commercial spunbonded nonwoven Nylon 66 mat. A combination of two interlayer fracture mechanisms responsible for the toughness improvement is suggested: the first is related to the high energy dissipated by bridged thermoplastic nanofibers and the second is attributed to the generation of a plastic zone near the crack tip. The interlaminar fracture mechanisms of both electrospun nanofibrilmat and the nonwoven mat interleaving was analyzed and discussed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pc.21210</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2011-11, Vol.32 (11), p.1781-1789
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_903537384
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
Laminates
Polymer industry, paints, wood
Technology of polymers
title Mode I interlaminar fracture toughness of Nylon 66 nanofibrilmat interleaved carbon/epoxy laminates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20I%20interlaminar%20fracture%20toughness%20of%20Nylon%2066%20nanofibrilmat%20interleaved%20carbon/epoxy%20laminates&rft.jtitle=Polymer%20composites&rft.au=Hamer,%20Shay&rft.date=2011-11&rft.volume=32&rft.issue=11&rft.spage=1781&rft.epage=1789&rft.pages=1781-1789&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.21210&rft_dat=%3Cproquest_cross%3E2509395001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903537384&rft_id=info:pmid/&rfr_iscdi=true