Sampling Variability and Axioms of Classical Test Theory
Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assu...
Gespeichert in:
Veröffentlicht in: | Journal of Educational and Behavioral Statistics 2011-10, Vol.36 (5), p.586-615 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 615 |
---|---|
container_issue | 5 |
container_start_page | 586 |
container_title | Journal of Educational and Behavioral Statistics |
container_volume | 36 |
creator | Zimmerman, Donald W. |
description | Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values. |
doi_str_mv | 10.3102/1076998610397052 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_903211190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ943092</ericid><jstor_id>41304110</jstor_id><sage_id>10.3102_1076998610397052</sage_id><sourcerecordid>41304110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-18552bba835b48bcc3a7b65530544a2cc5ebb86993435b093c7a925beb28d2a93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWFfvHhQWPa9OMkk3OZZSvyh4sHpdkjStKdtuTbZg_3tTVooIPc3A-817jyHkksIdUmD3FMq-UrJPAVUJgh2RHlUoCgqCH6c9ycVOPyVnMS4AKDKOPSLf9HJd-9U8_9DBa-Nr325zvZrmg2_fLGPezPJhrWP0Vtf5xMU2n3y6JmzPyclM19Fd_M6MvD-MJsOnYvz6-DwcjAuLyNqCSiGYMVqiMFwaa1GXpi8EplpcM2uFM0am5sgTAQptqRUTxhkmp0wrzMhN57sOzdcm5VeLZhNWKbJSgIxSmkZGbg9BSVaKA2CZKOgoG5oYg5tV6-CXOmwrCtXuidX_J6aTq-7EBW_3-OhFcQS1k4tOjnru_mQetrvu-EVsm7D34xSB00T9AEo0gOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909940037</pqid></control><display><type>article</type><title>Sampling Variability and Axioms of Classical Test Theory</title><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Zimmerman, Donald W.</creator><creatorcontrib>Zimmerman, Donald W.</creatorcontrib><description>Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.</description><identifier>ISSN: 1076-9986</identifier><identifier>EISSN: 1935-1054</identifier><identifier>DOI: 10.3102/1076998610397052</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Accuracy ; Classical test theory ; Coefficients ; Equations (Mathematics) ; Error rates ; Errors ; Measures of variability ; Population distributions ; Population mean ; Population parameters ; Reliability ; Sample size ; Sampling ; Sampling distributions ; Sampling Error ; Sampling errors ; Scores ; Standard deviation ; Standard scores ; Statistical discrepancies ; Test Reliability ; Test Theory</subject><ispartof>Journal of Educational and Behavioral Statistics, 2011-10, Vol.36 (5), p.586-615</ispartof><rights>Copyright © 2011 American Educational Research Association</rights><rights>American Educational Research Association 2011</rights><rights>Copyright American Educational Research Association Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-18552bba835b48bcc3a7b65530544a2cc5ebb86993435b093c7a925beb28d2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41304110$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41304110$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>313,314,776,780,788,799,828,21798,27899,27901,27902,43597,43598,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ943092$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmerman, Donald W.</creatorcontrib><title>Sampling Variability and Axioms of Classical Test Theory</title><title>Journal of Educational and Behavioral Statistics</title><description>Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.</description><subject>Accuracy</subject><subject>Classical test theory</subject><subject>Coefficients</subject><subject>Equations (Mathematics)</subject><subject>Error rates</subject><subject>Errors</subject><subject>Measures of variability</subject><subject>Population distributions</subject><subject>Population mean</subject><subject>Population parameters</subject><subject>Reliability</subject><subject>Sample size</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Sampling Error</subject><subject>Sampling errors</subject><subject>Scores</subject><subject>Standard deviation</subject><subject>Standard scores</subject><subject>Statistical discrepancies</subject><subject>Test Reliability</subject><subject>Test Theory</subject><issn>1076-9986</issn><issn>1935-1054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWFfvHhQWPa9OMkk3OZZSvyh4sHpdkjStKdtuTbZg_3tTVooIPc3A-817jyHkksIdUmD3FMq-UrJPAVUJgh2RHlUoCgqCH6c9ycVOPyVnMS4AKDKOPSLf9HJd-9U8_9DBa-Nr325zvZrmg2_fLGPezPJhrWP0Vtf5xMU2n3y6JmzPyclM19Fd_M6MvD-MJsOnYvz6-DwcjAuLyNqCSiGYMVqiMFwaa1GXpi8EplpcM2uFM0am5sgTAQptqRUTxhkmp0wrzMhN57sOzdcm5VeLZhNWKbJSgIxSmkZGbg9BSVaKA2CZKOgoG5oYg5tV6-CXOmwrCtXuidX_J6aTq-7EBW_3-OhFcQS1k4tOjnru_mQetrvu-EVsm7D34xSB00T9AEo0gOM</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Zimmerman, Donald W.</creator><general>SAGE Publications</general><general>American Educational Research Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111001</creationdate><title>Sampling Variability and Axioms of Classical Test Theory</title><author>Zimmerman, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-18552bba835b48bcc3a7b65530544a2cc5ebb86993435b093c7a925beb28d2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Classical test theory</topic><topic>Coefficients</topic><topic>Equations (Mathematics)</topic><topic>Error rates</topic><topic>Errors</topic><topic>Measures of variability</topic><topic>Population distributions</topic><topic>Population mean</topic><topic>Population parameters</topic><topic>Reliability</topic><topic>Sample size</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Sampling Error</topic><topic>Sampling errors</topic><topic>Scores</topic><topic>Standard deviation</topic><topic>Standard scores</topic><topic>Statistical discrepancies</topic><topic>Test Reliability</topic><topic>Test Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmerman, Donald W.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Journal of Educational and Behavioral Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmerman, Donald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ943092</ericid><atitle>Sampling Variability and Axioms of Classical Test Theory</atitle><jtitle>Journal of Educational and Behavioral Statistics</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>36</volume><issue>5</issue><spage>586</spage><epage>615</epage><pages>586-615</pages><issn>1076-9986</issn><eissn>1935-1054</eissn><abstract>Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3102/1076998610397052</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9986 |
ispartof | Journal of Educational and Behavioral Statistics, 2011-10, Vol.36 (5), p.586-615 |
issn | 1076-9986 1935-1054 |
language | eng |
recordid | cdi_proquest_journals_903211190 |
source | SAGE Complete A-Z List; Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Accuracy Classical test theory Coefficients Equations (Mathematics) Error rates Errors Measures of variability Population distributions Population mean Population parameters Reliability Sample size Sampling Sampling distributions Sampling Error Sampling errors Scores Standard deviation Standard scores Statistical discrepancies Test Reliability Test Theory |
title | Sampling Variability and Axioms of Classical Test Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Variability%20and%20Axioms%20of%20Classical%20Test%20Theory&rft.jtitle=Journal%20of%20Educational%20and%20Behavioral%20Statistics&rft.au=Zimmerman,%20Donald%20W.&rft.date=2011-10-01&rft.volume=36&rft.issue=5&rft.spage=586&rft.epage=615&rft.pages=586-615&rft.issn=1076-9986&rft.eissn=1935-1054&rft_id=info:doi/10.3102/1076998610397052&rft_dat=%3Cjstor_proqu%3E41304110%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909940037&rft_id=info:pmid/&rft_ericid=EJ943092&rft_jstor_id=41304110&rft_sage_id=10.3102_1076998610397052&rfr_iscdi=true |