Sampling Variability and Axioms of Classical Test Theory

Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Educational and Behavioral Statistics 2011-10, Vol.36 (5), p.586-615
1. Verfasser: Zimmerman, Donald W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 5
container_start_page 586
container_title Journal of Educational and Behavioral Statistics
container_volume 36
creator Zimmerman, Donald W.
description Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.
doi_str_mv 10.3102/1076998610397052
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_903211190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ943092</ericid><jstor_id>41304110</jstor_id><sage_id>10.3102_1076998610397052</sage_id><sourcerecordid>41304110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-18552bba835b48bcc3a7b65530544a2cc5ebb86993435b093c7a925beb28d2a93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWFfvHhQWPa9OMkk3OZZSvyh4sHpdkjStKdtuTbZg_3tTVooIPc3A-817jyHkksIdUmD3FMq-UrJPAVUJgh2RHlUoCgqCH6c9ycVOPyVnMS4AKDKOPSLf9HJd-9U8_9DBa-Nr325zvZrmg2_fLGPezPJhrWP0Vtf5xMU2n3y6JmzPyclM19Fd_M6MvD-MJsOnYvz6-DwcjAuLyNqCSiGYMVqiMFwaa1GXpi8EplpcM2uFM0am5sgTAQptqRUTxhkmp0wrzMhN57sOzdcm5VeLZhNWKbJSgIxSmkZGbg9BSVaKA2CZKOgoG5oYg5tV6-CXOmwrCtXuidX_J6aTq-7EBW_3-OhFcQS1k4tOjnru_mQetrvu-EVsm7D34xSB00T9AEo0gOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909940037</pqid></control><display><type>article</type><title>Sampling Variability and Axioms of Classical Test Theory</title><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Zimmerman, Donald W.</creator><creatorcontrib>Zimmerman, Donald W.</creatorcontrib><description>Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.</description><identifier>ISSN: 1076-9986</identifier><identifier>EISSN: 1935-1054</identifier><identifier>DOI: 10.3102/1076998610397052</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Accuracy ; Classical test theory ; Coefficients ; Equations (Mathematics) ; Error rates ; Errors ; Measures of variability ; Population distributions ; Population mean ; Population parameters ; Reliability ; Sample size ; Sampling ; Sampling distributions ; Sampling Error ; Sampling errors ; Scores ; Standard deviation ; Standard scores ; Statistical discrepancies ; Test Reliability ; Test Theory</subject><ispartof>Journal of Educational and Behavioral Statistics, 2011-10, Vol.36 (5), p.586-615</ispartof><rights>Copyright © 2011 American Educational Research Association</rights><rights>American Educational Research Association 2011</rights><rights>Copyright American Educational Research Association Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-18552bba835b48bcc3a7b65530544a2cc5ebb86993435b093c7a925beb28d2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41304110$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41304110$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>313,314,776,780,788,799,828,21798,27899,27901,27902,43597,43598,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ943092$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmerman, Donald W.</creatorcontrib><title>Sampling Variability and Axioms of Classical Test Theory</title><title>Journal of Educational and Behavioral Statistics</title><description>Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.</description><subject>Accuracy</subject><subject>Classical test theory</subject><subject>Coefficients</subject><subject>Equations (Mathematics)</subject><subject>Error rates</subject><subject>Errors</subject><subject>Measures of variability</subject><subject>Population distributions</subject><subject>Population mean</subject><subject>Population parameters</subject><subject>Reliability</subject><subject>Sample size</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Sampling Error</subject><subject>Sampling errors</subject><subject>Scores</subject><subject>Standard deviation</subject><subject>Standard scores</subject><subject>Statistical discrepancies</subject><subject>Test Reliability</subject><subject>Test Theory</subject><issn>1076-9986</issn><issn>1935-1054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWFfvHhQWPa9OMkk3OZZSvyh4sHpdkjStKdtuTbZg_3tTVooIPc3A-817jyHkksIdUmD3FMq-UrJPAVUJgh2RHlUoCgqCH6c9ycVOPyVnMS4AKDKOPSLf9HJd-9U8_9DBa-Nr325zvZrmg2_fLGPezPJhrWP0Vtf5xMU2n3y6JmzPyclM19Fd_M6MvD-MJsOnYvz6-DwcjAuLyNqCSiGYMVqiMFwaa1GXpi8EplpcM2uFM0am5sgTAQptqRUTxhkmp0wrzMhN57sOzdcm5VeLZhNWKbJSgIxSmkZGbg9BSVaKA2CZKOgoG5oYg5tV6-CXOmwrCtXuidX_J6aTq-7EBW_3-OhFcQS1k4tOjnru_mQetrvu-EVsm7D34xSB00T9AEo0gOM</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Zimmerman, Donald W.</creator><general>SAGE Publications</general><general>American Educational Research Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111001</creationdate><title>Sampling Variability and Axioms of Classical Test Theory</title><author>Zimmerman, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-18552bba835b48bcc3a7b65530544a2cc5ebb86993435b093c7a925beb28d2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Classical test theory</topic><topic>Coefficients</topic><topic>Equations (Mathematics)</topic><topic>Error rates</topic><topic>Errors</topic><topic>Measures of variability</topic><topic>Population distributions</topic><topic>Population mean</topic><topic>Population parameters</topic><topic>Reliability</topic><topic>Sample size</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Sampling Error</topic><topic>Sampling errors</topic><topic>Scores</topic><topic>Standard deviation</topic><topic>Standard scores</topic><topic>Statistical discrepancies</topic><topic>Test Reliability</topic><topic>Test Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmerman, Donald W.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Journal of Educational and Behavioral Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmerman, Donald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ943092</ericid><atitle>Sampling Variability and Axioms of Classical Test Theory</atitle><jtitle>Journal of Educational and Behavioral Statistics</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>36</volume><issue>5</issue><spage>586</spage><epage>615</epage><pages>586-615</pages><issn>1076-9986</issn><eissn>1935-1054</eissn><abstract>Many well-known equations in classical test theory are mathematical identities in populations of individuals but not in random samples from those populations. First, test scores are subject to the same sampling error that is familiar in statistical estimation and hypothesis testing. Second, the assumptions made in derivation of formulas in test theory are not necessarily satisfied in small samples. The present study derived modified equations relating testscores and components of scores that are identities in samples of any size and that reduce to the more familiar equations when various correlations are zero. Simulations determined the accuracy of both the familiar and the modified equations when applied to samples of various sizes from populations with known reliability coefficients. The programs also determined the variability of the sample values for different parameters in the equations and for different sample sizes, as well as the means and variances of discrepancies between population and sample values.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3102/1076998610397052</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-9986
ispartof Journal of Educational and Behavioral Statistics, 2011-10, Vol.36 (5), p.586-615
issn 1076-9986
1935-1054
language eng
recordid cdi_proquest_journals_903211190
source SAGE Complete A-Z List; Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Accuracy
Classical test theory
Coefficients
Equations (Mathematics)
Error rates
Errors
Measures of variability
Population distributions
Population mean
Population parameters
Reliability
Sample size
Sampling
Sampling distributions
Sampling Error
Sampling errors
Scores
Standard deviation
Standard scores
Statistical discrepancies
Test Reliability
Test Theory
title Sampling Variability and Axioms of Classical Test Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Variability%20and%20Axioms%20of%20Classical%20Test%20Theory&rft.jtitle=Journal%20of%20Educational%20and%20Behavioral%20Statistics&rft.au=Zimmerman,%20Donald%20W.&rft.date=2011-10-01&rft.volume=36&rft.issue=5&rft.spage=586&rft.epage=615&rft.pages=586-615&rft.issn=1076-9986&rft.eissn=1935-1054&rft_id=info:doi/10.3102/1076998610397052&rft_dat=%3Cjstor_proqu%3E41304110%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909940037&rft_id=info:pmid/&rft_ericid=EJ943092&rft_jstor_id=41304110&rft_sage_id=10.3102_1076998610397052&rfr_iscdi=true