Bayesian clustering of distributions in stochastic frontier analysis

In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of productivity analysis 2011-12, Vol.36 (3), p.275-283
1. Verfasser: Griffin, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 3
container_start_page 275
container_title Journal of productivity analysis
container_volume 36
creator Griffin, J. E.
description In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.
doi_str_mv 10.1007/s11123-011-0213-7
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_902681311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23883803</jstor_id><sourcerecordid>23883803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AA9C8V6dSZo2PfqtsOBFwVtIs4lmWds1kx7235ulojdPA8P7vDM8jJ0iXCBAc0mIyEUJiCVwFGWzx2Yom7ypKtxnM1CtLGXN3w7ZEdEKAFrVtDN2e222joLpC7seKbkY-vdi8MUyUIqhG1MYeipCX1Aa7IehFGzh49Cn4GJherPeUqBjduDNmtzJz5yz1_u7l5vHcvH88HRztShtBZBKW3ML0rVK5Ge94Z0UwtfcqMrLpePeLl3doPKyVgpAcexkZTvAhiuQphVizs6n3k0cvkZHSa-GMeYnSLfAa4W5OIdwCtk4EEXn9SaGTxO3GkHvXOnJlc6u9M6VbjLDJ4Y2OwEu_hX_B51N0Cq7ib9XuFBKKBDiGw1-dUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902681311</pqid></control><display><type>article</type><title>Bayesian clustering of distributions in stochastic frontier analysis</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Griffin, J. E.</creator><creatorcontrib>Griffin, J. E.</creatorcontrib><description>In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.</description><identifier>ISSN: 0895-562X</identifier><identifier>EISSN: 1573-0441</identifier><identifier>DOI: 10.1007/s11123-011-0213-7</identifier><language>eng</language><publisher>Boston: Springer</publisher><subject>Accounting/Auditing ; Bayesian analysis ; Cluster analysis ; Cost allocation ; Distribution of profits ; Econometrics ; Economics ; Economics and Finance ; Hospital costs ; Inference ; Markov analysis ; Markov chains ; Microeconomics ; Modeling ; Monte Carlo simulation ; Nonparametric models ; Nonprofit hospitals ; Normal distribution ; Operations Research/Decision Theory ; Random variables ; Steels ; Stochastic models ; Studies</subject><ispartof>Journal of productivity analysis, 2011-12, Vol.36 (3), p.275-283</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</citedby><cites>FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23883803$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23883803$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Griffin, J. E.</creatorcontrib><title>Bayesian clustering of distributions in stochastic frontier analysis</title><title>Journal of productivity analysis</title><addtitle>J Prod Anal</addtitle><description>In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.</description><subject>Accounting/Auditing</subject><subject>Bayesian analysis</subject><subject>Cluster analysis</subject><subject>Cost allocation</subject><subject>Distribution of profits</subject><subject>Econometrics</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Hospital costs</subject><subject>Inference</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Microeconomics</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric models</subject><subject>Nonprofit hospitals</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Random variables</subject><subject>Steels</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0895-562X</issn><issn>1573-0441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AA9C8V6dSZo2PfqtsOBFwVtIs4lmWds1kx7235ulojdPA8P7vDM8jJ0iXCBAc0mIyEUJiCVwFGWzx2Yom7ypKtxnM1CtLGXN3w7ZEdEKAFrVtDN2e222joLpC7seKbkY-vdi8MUyUIqhG1MYeipCX1Aa7IehFGzh49Cn4GJherPeUqBjduDNmtzJz5yz1_u7l5vHcvH88HRztShtBZBKW3ML0rVK5Ge94Z0UwtfcqMrLpePeLl3doPKyVgpAcexkZTvAhiuQphVizs6n3k0cvkZHSa-GMeYnSLfAa4W5OIdwCtk4EEXn9SaGTxO3GkHvXOnJlc6u9M6VbjLDJ4Y2OwEu_hX_B51N0Cq7ib9XuFBKKBDiGw1-dUs</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Griffin, J. E.</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20111201</creationdate><title>Bayesian clustering of distributions in stochastic frontier analysis</title><author>Griffin, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accounting/Auditing</topic><topic>Bayesian analysis</topic><topic>Cluster analysis</topic><topic>Cost allocation</topic><topic>Distribution of profits</topic><topic>Econometrics</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Hospital costs</topic><topic>Inference</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Microeconomics</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric models</topic><topic>Nonprofit hospitals</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Random variables</topic><topic>Steels</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffin, J. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of productivity analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian clustering of distributions in stochastic frontier analysis</atitle><jtitle>Journal of productivity analysis</jtitle><stitle>J Prod Anal</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>36</volume><issue>3</issue><spage>275</spage><epage>283</epage><pages>275-283</pages><issn>0895-562X</issn><eissn>1573-0441</eissn><abstract>In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.</abstract><cop>Boston</cop><pub>Springer</pub><doi>10.1007/s11123-011-0213-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-562X
ispartof Journal of productivity analysis, 2011-12, Vol.36 (3), p.275-283
issn 0895-562X
1573-0441
language eng
recordid cdi_proquest_journals_902681311
source Jstor Complete Legacy; SpringerLink Journals; EBSCOhost Business Source Complete
subjects Accounting/Auditing
Bayesian analysis
Cluster analysis
Cost allocation
Distribution of profits
Econometrics
Economics
Economics and Finance
Hospital costs
Inference
Markov analysis
Markov chains
Microeconomics
Modeling
Monte Carlo simulation
Nonparametric models
Nonprofit hospitals
Normal distribution
Operations Research/Decision Theory
Random variables
Steels
Stochastic models
Studies
title Bayesian clustering of distributions in stochastic frontier analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20clustering%20of%20distributions%20in%20stochastic%20frontier%20analysis&rft.jtitle=Journal%20of%20productivity%20analysis&rft.au=Griffin,%20J.%20E.&rft.date=2011-12-01&rft.volume=36&rft.issue=3&rft.spage=275&rft.epage=283&rft.pages=275-283&rft.issn=0895-562X&rft.eissn=1573-0441&rft_id=info:doi/10.1007/s11123-011-0213-7&rft_dat=%3Cjstor_proqu%3E23883803%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902681311&rft_id=info:pmid/&rft_jstor_id=23883803&rfr_iscdi=true