Bayesian clustering of distributions in stochastic frontier analysis
In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distribution...
Gespeichert in:
Veröffentlicht in: | Journal of productivity analysis 2011-12, Vol.36 (3), p.275-283 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 3 |
container_start_page | 275 |
container_title | Journal of productivity analysis |
container_volume | 36 |
creator | Griffin, J. E. |
description | In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals. |
doi_str_mv | 10.1007/s11123-011-0213-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_902681311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23883803</jstor_id><sourcerecordid>23883803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AA9C8V6dSZo2PfqtsOBFwVtIs4lmWds1kx7235ulojdPA8P7vDM8jJ0iXCBAc0mIyEUJiCVwFGWzx2Yom7ypKtxnM1CtLGXN3w7ZEdEKAFrVtDN2e222joLpC7seKbkY-vdi8MUyUIqhG1MYeipCX1Aa7IehFGzh49Cn4GJherPeUqBjduDNmtzJz5yz1_u7l5vHcvH88HRztShtBZBKW3ML0rVK5Ge94Z0UwtfcqMrLpePeLl3doPKyVgpAcexkZTvAhiuQphVizs6n3k0cvkZHSa-GMeYnSLfAa4W5OIdwCtk4EEXn9SaGTxO3GkHvXOnJlc6u9M6VbjLDJ4Y2OwEu_hX_B51N0Cq7ib9XuFBKKBDiGw1-dUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902681311</pqid></control><display><type>article</type><title>Bayesian clustering of distributions in stochastic frontier analysis</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Griffin, J. E.</creator><creatorcontrib>Griffin, J. E.</creatorcontrib><description>In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.</description><identifier>ISSN: 0895-562X</identifier><identifier>EISSN: 1573-0441</identifier><identifier>DOI: 10.1007/s11123-011-0213-7</identifier><language>eng</language><publisher>Boston: Springer</publisher><subject>Accounting/Auditing ; Bayesian analysis ; Cluster analysis ; Cost allocation ; Distribution of profits ; Econometrics ; Economics ; Economics and Finance ; Hospital costs ; Inference ; Markov analysis ; Markov chains ; Microeconomics ; Modeling ; Monte Carlo simulation ; Nonparametric models ; Nonprofit hospitals ; Normal distribution ; Operations Research/Decision Theory ; Random variables ; Steels ; Stochastic models ; Studies</subject><ispartof>Journal of productivity analysis, 2011-12, Vol.36 (3), p.275-283</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</citedby><cites>FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23883803$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23883803$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Griffin, J. E.</creatorcontrib><title>Bayesian clustering of distributions in stochastic frontier analysis</title><title>Journal of productivity analysis</title><addtitle>J Prod Anal</addtitle><description>In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.</description><subject>Accounting/Auditing</subject><subject>Bayesian analysis</subject><subject>Cluster analysis</subject><subject>Cost allocation</subject><subject>Distribution of profits</subject><subject>Econometrics</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Hospital costs</subject><subject>Inference</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Microeconomics</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric models</subject><subject>Nonprofit hospitals</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Random variables</subject><subject>Steels</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0895-562X</issn><issn>1573-0441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AA9C8V6dSZo2PfqtsOBFwVtIs4lmWds1kx7235ulojdPA8P7vDM8jJ0iXCBAc0mIyEUJiCVwFGWzx2Yom7ypKtxnM1CtLGXN3w7ZEdEKAFrVtDN2e222joLpC7seKbkY-vdi8MUyUIqhG1MYeipCX1Aa7IehFGzh49Cn4GJherPeUqBjduDNmtzJz5yz1_u7l5vHcvH88HRztShtBZBKW3ML0rVK5Ge94Z0UwtfcqMrLpePeLl3doPKyVgpAcexkZTvAhiuQphVizs6n3k0cvkZHSa-GMeYnSLfAa4W5OIdwCtk4EEXn9SaGTxO3GkHvXOnJlc6u9M6VbjLDJ4Y2OwEu_hX_B51N0Cq7ib9XuFBKKBDiGw1-dUs</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Griffin, J. E.</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20111201</creationdate><title>Bayesian clustering of distributions in stochastic frontier analysis</title><author>Griffin, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c62c05e983111fa2b533f62a84f5de2fcde6718f568800821b54cb0172805a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accounting/Auditing</topic><topic>Bayesian analysis</topic><topic>Cluster analysis</topic><topic>Cost allocation</topic><topic>Distribution of profits</topic><topic>Econometrics</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Hospital costs</topic><topic>Inference</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Microeconomics</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric models</topic><topic>Nonprofit hospitals</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Random variables</topic><topic>Steels</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffin, J. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of productivity analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian clustering of distributions in stochastic frontier analysis</atitle><jtitle>Journal of productivity analysis</jtitle><stitle>J Prod Anal</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>36</volume><issue>3</issue><spage>275</spage><epage>283</epage><pages>275-283</pages><issn>0895-562X</issn><eissn>1573-0441</eissn><abstract>In stochastic frontier analysis, firm-specific efficiencies and their distribution are often main variables of interest. If firms fall into several groups, it is natural to allow each group to have its own distribution. This paper considers a method for nonparametrically modelling these distributions using Dirichlet processes. A common problem when applying nonparametric methods to grouped data is small sample sizes for some groups which can lead to poor inference. Methods that allow dependence between each group's distribution are one set of solutions. The proposed model clusters the groups and assumes that the unknown distribution for each group in a cluster are the same. These clusters are inferred from the data. Markov chain Monte Carlo methods are necessary for model-fitting and efficient methods are described. The model is illustrated on a cost frontier application to US hospitals.</abstract><cop>Boston</cop><pub>Springer</pub><doi>10.1007/s11123-011-0213-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-562X |
ispartof | Journal of productivity analysis, 2011-12, Vol.36 (3), p.275-283 |
issn | 0895-562X 1573-0441 |
language | eng |
recordid | cdi_proquest_journals_902681311 |
source | Jstor Complete Legacy; SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Accounting/Auditing Bayesian analysis Cluster analysis Cost allocation Distribution of profits Econometrics Economics Economics and Finance Hospital costs Inference Markov analysis Markov chains Microeconomics Modeling Monte Carlo simulation Nonparametric models Nonprofit hospitals Normal distribution Operations Research/Decision Theory Random variables Steels Stochastic models Studies |
title | Bayesian clustering of distributions in stochastic frontier analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20clustering%20of%20distributions%20in%20stochastic%20frontier%20analysis&rft.jtitle=Journal%20of%20productivity%20analysis&rft.au=Griffin,%20J.%20E.&rft.date=2011-12-01&rft.volume=36&rft.issue=3&rft.spage=275&rft.epage=283&rft.pages=275-283&rft.issn=0895-562X&rft.eissn=1573-0441&rft_id=info:doi/10.1007/s11123-011-0213-7&rft_dat=%3Cjstor_proqu%3E23883803%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902681311&rft_id=info:pmid/&rft_jstor_id=23883803&rfr_iscdi=true |