Existence of energy-minimal diffeomorphisms between doubly connected domains

The paper establishes the existence of homeomorphisms between two planar domains that minimize the Dirichlet energy. Among all homeomorphisms between bounded doubly connected domains such that Mod Ω≤Mod Ω ∗ there exists, unique up to conformal authomorphisms of Ω , an energy-minimal diffeomorphism ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2011-12, Vol.186 (3), p.667-707
Hauptverfasser: Iwaniec, Tadeusz, Koh, Ngin-Tee, Kovalev, Leonid V., Onninen, Jani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 667
container_title Inventiones mathematicae
container_volume 186
creator Iwaniec, Tadeusz
Koh, Ngin-Tee
Kovalev, Leonid V.
Onninen, Jani
description The paper establishes the existence of homeomorphisms between two planar domains that minimize the Dirichlet energy. Among all homeomorphisms between bounded doubly connected domains such that Mod Ω≤Mod Ω ∗ there exists, unique up to conformal authomorphisms of Ω , an energy-minimal diffeomorphism . Here Mod  stands for the conformal modulus of a domain. No boundary conditions are imposed on f . Although any energy-minimal diffeomorphism is harmonic, our results underline the major difference between the existence of harmonic diffeomorphisms and the existence of the energy-minimal diffeomorphisms. The existence of globally invertible energy-minimal mappings is of primary pursuit in the mathematical models of nonlinear elasticity and is also of interest in computer graphics.
doi_str_mv 10.1007/s00222-011-0327-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_902680901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505991801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-29eafd313cc222f13b497643d607e0c1e5821e8c88afd96f171a1fe72c06e4233</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwA7hV3AN20jXNEU2DIU3iAueoS53RaU1G0gn278lUJE6cLNnvPdsfY7cI9wigHhKAEIIDIgcpFK_O2ARLKTgKrc7ZJI-Ba41wya5S2gLkoRITtlp8d2kgb6kIriBPcXPkfee7vtkVbecchT7E_UeX-lSsafgi8kUbDuvdsbDBe7IDtbnRN51P1-zCNbtEN791yt6fFm_zJV-9Pr_MH1fcSpwNXGhqXCtRWptvdijXpVZVKdsKFIFFmtUCqbZ1nWW6cqiwQUdKWKioFFJO2d2Yu4_h80BpMNtwiD6vNBpEVYMGzCIcRTaGlCI5s4_5q3g0CObEzIzMTGZmTsxMlT1i9KSs9RuKf8H_m34AApRvAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902680901</pqid></control><display><type>article</type><title>Existence of energy-minimal diffeomorphisms between doubly connected domains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Iwaniec, Tadeusz ; Koh, Ngin-Tee ; Kovalev, Leonid V. ; Onninen, Jani</creator><creatorcontrib>Iwaniec, Tadeusz ; Koh, Ngin-Tee ; Kovalev, Leonid V. ; Onninen, Jani</creatorcontrib><description>The paper establishes the existence of homeomorphisms between two planar domains that minimize the Dirichlet energy. Among all homeomorphisms between bounded doubly connected domains such that Mod Ω≤Mod Ω ∗ there exists, unique up to conformal authomorphisms of Ω , an energy-minimal diffeomorphism . Here Mod  stands for the conformal modulus of a domain. No boundary conditions are imposed on f . Although any energy-minimal diffeomorphism is harmonic, our results underline the major difference between the existence of harmonic diffeomorphisms and the existence of the energy-minimal diffeomorphisms. The existence of globally invertible energy-minimal mappings is of primary pursuit in the mathematical models of nonlinear elasticity and is also of interest in computer graphics.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-011-0327-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2011-12, Vol.186 (3), p.667-707</ispartof><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-29eafd313cc222f13b497643d607e0c1e5821e8c88afd96f171a1fe72c06e4233</citedby><cites>FETCH-LOGICAL-c315t-29eafd313cc222f13b497643d607e0c1e5821e8c88afd96f171a1fe72c06e4233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-011-0327-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-011-0327-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Iwaniec, Tadeusz</creatorcontrib><creatorcontrib>Koh, Ngin-Tee</creatorcontrib><creatorcontrib>Kovalev, Leonid V.</creatorcontrib><creatorcontrib>Onninen, Jani</creatorcontrib><title>Existence of energy-minimal diffeomorphisms between doubly connected domains</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>The paper establishes the existence of homeomorphisms between two planar domains that minimize the Dirichlet energy. Among all homeomorphisms between bounded doubly connected domains such that Mod Ω≤Mod Ω ∗ there exists, unique up to conformal authomorphisms of Ω , an energy-minimal diffeomorphism . Here Mod  stands for the conformal modulus of a domain. No boundary conditions are imposed on f . Although any energy-minimal diffeomorphism is harmonic, our results underline the major difference between the existence of harmonic diffeomorphisms and the existence of the energy-minimal diffeomorphisms. The existence of globally invertible energy-minimal mappings is of primary pursuit in the mathematical models of nonlinear elasticity and is also of interest in computer graphics.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFPwzAMhSMEEmPwA7hV3AN20jXNEU2DIU3iAueoS53RaU1G0gn278lUJE6cLNnvPdsfY7cI9wigHhKAEIIDIgcpFK_O2ARLKTgKrc7ZJI-Ba41wya5S2gLkoRITtlp8d2kgb6kIriBPcXPkfee7vtkVbecchT7E_UeX-lSsafgi8kUbDuvdsbDBe7IDtbnRN51P1-zCNbtEN791yt6fFm_zJV-9Pr_MH1fcSpwNXGhqXCtRWptvdijXpVZVKdsKFIFFmtUCqbZ1nWW6cqiwQUdKWKioFFJO2d2Yu4_h80BpMNtwiD6vNBpEVYMGzCIcRTaGlCI5s4_5q3g0CObEzIzMTGZmTsxMlT1i9KSs9RuKf8H_m34AApRvAA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Iwaniec, Tadeusz</creator><creator>Koh, Ngin-Tee</creator><creator>Kovalev, Leonid V.</creator><creator>Onninen, Jani</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20111201</creationdate><title>Existence of energy-minimal diffeomorphisms between doubly connected domains</title><author>Iwaniec, Tadeusz ; Koh, Ngin-Tee ; Kovalev, Leonid V. ; Onninen, Jani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-29eafd313cc222f13b497643d607e0c1e5821e8c88afd96f171a1fe72c06e4233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwaniec, Tadeusz</creatorcontrib><creatorcontrib>Koh, Ngin-Tee</creatorcontrib><creatorcontrib>Kovalev, Leonid V.</creatorcontrib><creatorcontrib>Onninen, Jani</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwaniec, Tadeusz</au><au>Koh, Ngin-Tee</au><au>Kovalev, Leonid V.</au><au>Onninen, Jani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of energy-minimal diffeomorphisms between doubly connected domains</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>186</volume><issue>3</issue><spage>667</spage><epage>707</epage><pages>667-707</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>The paper establishes the existence of homeomorphisms between two planar domains that minimize the Dirichlet energy. Among all homeomorphisms between bounded doubly connected domains such that Mod Ω≤Mod Ω ∗ there exists, unique up to conformal authomorphisms of Ω , an energy-minimal diffeomorphism . Here Mod  stands for the conformal modulus of a domain. No boundary conditions are imposed on f . Although any energy-minimal diffeomorphism is harmonic, our results underline the major difference between the existence of harmonic diffeomorphisms and the existence of the energy-minimal diffeomorphisms. The existence of globally invertible energy-minimal mappings is of primary pursuit in the mathematical models of nonlinear elasticity and is also of interest in computer graphics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00222-011-0327-6</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2011-12, Vol.186 (3), p.667-707
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_902680901
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title Existence of energy-minimal diffeomorphisms between doubly connected domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20energy-minimal%20diffeomorphisms%20between%20doubly%20connected%20domains&rft.jtitle=Inventiones%20mathematicae&rft.au=Iwaniec,%20Tadeusz&rft.date=2011-12-01&rft.volume=186&rft.issue=3&rft.spage=667&rft.epage=707&rft.pages=667-707&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-011-0327-6&rft_dat=%3Cproquest_cross%3E2505991801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902680901&rft_id=info:pmid/&rfr_iscdi=true