Combination of Lyapunov and Density Functions for Stability of Rotational Motion

Lyapunov methods and density functions provide dual characterizations of the solutions of a nonlinear dynamic system. This work exploits the idea of combining both techniques, to yield stability results that are valid for almost all the solutions of the system. Based on the combination of Lyapunov a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-11, Vol.56 (11), p.2599-2607
Hauptverfasser: Fernandes Vasconcelos, José, Rantzer, Anders, Silvestre, C., Oliveira, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2607
container_issue 11
container_start_page 2599
container_title IEEE transactions on automatic control
container_volume 56
creator Fernandes Vasconcelos, José
Rantzer, Anders
Silvestre, C.
Oliveira, P. J.
description Lyapunov methods and density functions provide dual characterizations of the solutions of a nonlinear dynamic system. This work exploits the idea of combining both techniques, to yield stability results that are valid for almost all the solutions of the system. Based on the combination of Lyapunov and density functions, analysis methods are proposed for the derivation of almost input-to-state stability, and of almost global stability in nonlinear systems. The techniques are illustrated for an inertial attitude observer, where angular velocity readings are corrupted by non-idealities.
doi_str_mv 10.1109/TAC.2011.2123290
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_901632932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5725165</ieee_id><sourcerecordid>963921194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-9769e9b81dfacbaf6bce27b4fc9df08b11717a87c254d1285ab5c59b5f4700343</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMo2M64F9wUgriqnty8sxxaR4UWh3FchySVQIbqSlmpUvrfm7KbXri45PWdc8M9CL0BvAXA-ubxdrclGGBLgFCi8TO0Ac5VSzihz9EGY1CtJkq8RK9KeapHwRhs0P0uH1wa7Jzy0OTY7I92XIb8u7FD13wMQ0nzsblbBr8CpYl5an7M1qV-va_8Q57_aW3ffMvr5hq9iLYv4fV5vUI_7z497r60---fv-5u961nSs6tlkIH7RR00Xpno3A-EOlY9LqLWDkACdIq6QlnHRDFreOea8cjkxhTRq_Q_uRb_oRxcWac0sFOR5NtMv0y1nK1TAlGEsqY6jqjNHDDSMeMtUIaDLx2igqikNXuw8lunPKvJZTZHFLxoe_tEPJSjBZUEwC9Nn73H_mUl6kOoEJ1qnX2lFQInyA_5VKmEC__A2zWvEzNy6x5mXNeVfL-7GuLt32c7OBTueiIYJhRJSr39sSlEMLlmUvCQXD6F31VnLE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901632932</pqid></control><display><type>article</type><title>Combination of Lyapunov and Density Functions for Stability of Rotational Motion</title><source>IEEE Electronic Library (IEL)</source><creator>Fernandes Vasconcelos, José ; Rantzer, Anders ; Silvestre, C. ; Oliveira, P. J.</creator><creatorcontrib>Fernandes Vasconcelos, José ; Rantzer, Anders ; Silvestre, C. ; Oliveira, P. J.</creatorcontrib><description>Lyapunov methods and density functions provide dual characterizations of the solutions of a nonlinear dynamic system. This work exploits the idea of combining both techniques, to yield stability results that are valid for almost all the solutions of the system. Based on the combination of Lyapunov and density functions, analysis methods are proposed for the derivation of almost input-to-state stability, and of almost global stability in nonlinear systems. The techniques are illustrated for an inertial attitude observer, where angular velocity readings are corrupted by non-idealities.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2123290</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Angular velocity ; Applied sciences ; Asymptotic stability ; Computer science; control theory; systems ; Control Engineering ; Control system analysis ; Control theory. Systems ; Density ; Density functional theory ; density functions ; Derivation ; Dynamical systems ; Electrical Engineering, Electronic Engineering, Information Engineering ; Elektroteknik och elektronik ; Engineering and Technology ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; input-to-state stability ; Lyapunov method ; Lyapunov methods ; Modelling and identification ; Noise ; Nonlinear dynamics ; Observers ; Physics ; Reglerteknik ; Rotational ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Stability ; Stability criteria ; Teknik ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2011-11, Vol.56 (11), p.2599-2607</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-9769e9b81dfacbaf6bce27b4fc9df08b11717a87c254d1285ab5c59b5f4700343</citedby><cites>FETCH-LOGICAL-c487t-9769e9b81dfacbaf6bce27b4fc9df08b11717a87c254d1285ab5c59b5f4700343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5725165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,554,782,786,798,887,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5725165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26404386$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/2203240$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes Vasconcelos, José</creatorcontrib><creatorcontrib>Rantzer, Anders</creatorcontrib><creatorcontrib>Silvestre, C.</creatorcontrib><creatorcontrib>Oliveira, P. J.</creatorcontrib><title>Combination of Lyapunov and Density Functions for Stability of Rotational Motion</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Lyapunov methods and density functions provide dual characterizations of the solutions of a nonlinear dynamic system. This work exploits the idea of combining both techniques, to yield stability results that are valid for almost all the solutions of the system. Based on the combination of Lyapunov and density functions, analysis methods are proposed for the derivation of almost input-to-state stability, and of almost global stability in nonlinear systems. The techniques are illustrated for an inertial attitude observer, where angular velocity readings are corrupted by non-idealities.</description><subject>Angular velocity</subject><subject>Applied sciences</subject><subject>Asymptotic stability</subject><subject>Computer science; control theory; systems</subject><subject>Control Engineering</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Density</subject><subject>Density functional theory</subject><subject>density functions</subject><subject>Derivation</subject><subject>Dynamical systems</subject><subject>Electrical Engineering, Electronic Engineering, Information Engineering</subject><subject>Elektroteknik och elektronik</subject><subject>Engineering and Technology</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>input-to-state stability</subject><subject>Lyapunov method</subject><subject>Lyapunov methods</subject><subject>Modelling and identification</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Observers</subject><subject>Physics</subject><subject>Reglerteknik</subject><subject>Rotational</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Teknik</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpdkUuLFDEUhYMo2M64F9wUgriqnty8sxxaR4UWh3FchySVQIbqSlmpUvrfm7KbXri45PWdc8M9CL0BvAXA-ubxdrclGGBLgFCi8TO0Ac5VSzihz9EGY1CtJkq8RK9KeapHwRhs0P0uH1wa7Jzy0OTY7I92XIb8u7FD13wMQ0nzsblbBr8CpYl5an7M1qV-va_8Q57_aW3ffMvr5hq9iLYv4fV5vUI_7z497r60---fv-5u961nSs6tlkIH7RR00Xpno3A-EOlY9LqLWDkACdIq6QlnHRDFreOea8cjkxhTRq_Q_uRb_oRxcWac0sFOR5NtMv0y1nK1TAlGEsqY6jqjNHDDSMeMtUIaDLx2igqikNXuw8lunPKvJZTZHFLxoe_tEPJSjBZUEwC9Nn73H_mUl6kOoEJ1qnX2lFQInyA_5VKmEC__A2zWvEzNy6x5mXNeVfL-7GuLt32c7OBTueiIYJhRJSr39sSlEMLlmUvCQXD6F31VnLE</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Fernandes Vasconcelos, José</creator><creator>Rantzer, Anders</creator><creator>Silvestre, C.</creator><creator>Oliveira, P. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope></search><sort><creationdate>20111101</creationdate><title>Combination of Lyapunov and Density Functions for Stability of Rotational Motion</title><author>Fernandes Vasconcelos, José ; Rantzer, Anders ; Silvestre, C. ; Oliveira, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-9769e9b81dfacbaf6bce27b4fc9df08b11717a87c254d1285ab5c59b5f4700343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angular velocity</topic><topic>Applied sciences</topic><topic>Asymptotic stability</topic><topic>Computer science; control theory; systems</topic><topic>Control Engineering</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Density</topic><topic>Density functional theory</topic><topic>density functions</topic><topic>Derivation</topic><topic>Dynamical systems</topic><topic>Electrical Engineering, Electronic Engineering, Information Engineering</topic><topic>Elektroteknik och elektronik</topic><topic>Engineering and Technology</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>input-to-state stability</topic><topic>Lyapunov method</topic><topic>Lyapunov methods</topic><topic>Modelling and identification</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Observers</topic><topic>Physics</topic><topic>Reglerteknik</topic><topic>Rotational</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Teknik</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes Vasconcelos, José</creatorcontrib><creatorcontrib>Rantzer, Anders</creatorcontrib><creatorcontrib>Silvestre, C.</creatorcontrib><creatorcontrib>Oliveira, P. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fernandes Vasconcelos, José</au><au>Rantzer, Anders</au><au>Silvestre, C.</au><au>Oliveira, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Lyapunov and Density Functions for Stability of Rotational Motion</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>56</volume><issue>11</issue><spage>2599</spage><epage>2607</epage><pages>2599-2607</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Lyapunov methods and density functions provide dual characterizations of the solutions of a nonlinear dynamic system. This work exploits the idea of combining both techniques, to yield stability results that are valid for almost all the solutions of the system. Based on the combination of Lyapunov and density functions, analysis methods are proposed for the derivation of almost input-to-state stability, and of almost global stability in nonlinear systems. The techniques are illustrated for an inertial attitude observer, where angular velocity readings are corrupted by non-idealities.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2123290</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2011-11, Vol.56 (11), p.2599-2607
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_901632932
source IEEE Electronic Library (IEL)
subjects Angular velocity
Applied sciences
Asymptotic stability
Computer science
control theory
systems
Control Engineering
Control system analysis
Control theory. Systems
Density
Density functional theory
density functions
Derivation
Dynamical systems
Electrical Engineering, Electronic Engineering, Information Engineering
Elektroteknik och elektronik
Engineering and Technology
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
input-to-state stability
Lyapunov method
Lyapunov methods
Modelling and identification
Noise
Nonlinear dynamics
Observers
Physics
Reglerteknik
Rotational
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Stability
Stability criteria
Teknik
Trajectory
title Combination of Lyapunov and Density Functions for Stability of Rotational Motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T09%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Lyapunov%20and%20Density%20Functions%20for%20Stability%20of%20Rotational%20Motion&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Fernandes%20Vasconcelos,%20Jose%CC%81&rft.date=2011-11-01&rft.volume=56&rft.issue=11&rft.spage=2599&rft.epage=2607&rft.pages=2599-2607&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2123290&rft_dat=%3Cproquest_RIE%3E963921194%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901632932&rft_id=info:pmid/&rft_ieee_id=5725165&rfr_iscdi=true