Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b
Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (42), p.17408-17413 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17413 |
---|---|
container_issue | 42 |
container_start_page | 17408 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Rajaram, Murugesan V. S. Ni, Bin Morris, Jessica D. Brooks, Michelle N. Carlson, Tracy K. Bakthavachalu, Baskar Schoenberg, Daniel R. Torrelles, Jordi B. Schlesinger, Larry S. |
description | Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence. |
doi_str_mv | 10.1073/pnas.1112660108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_900087180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352517</jstor_id><sourcerecordid>41352517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</originalsourceid><addsrcrecordid>eNp9kkFvEzEQhVcIREPhzAlkcaEcth17ba99QYoqCqhNQVU5W17HSZzu2ou9Wyl_g1-MQ0IKHDjZ0nzvaebpFcVLDKcY6uqs9zqdYowJ54BBPComGCQuOZXwuJgAkLoUlNCj4llKawCQTMDT4ohgySVjdFL8mG1MaLQZbHRjh4axsdGMbUguodb1odPea4-aNpi7hG6vL1DjQtr4YWW3SLNB0S7HVg_OL1GnTQz9Si8tmk2_XpbZ1t3rwc5RH8NgnUd3Li9sEUEns0vyDmk_R53Lopvraf7clJiw5nnxZKHbZF_s3-Pi28WH2_NP5dWXj5_Pp1elYRUeyrnhnGNJ5hKgqa00mBsiOFBDGbOCAVs0VcW1rvOUUsY5q2uuF1jiLGPz6rh4v_Ptx6azc2P9EHWr-ug6HTcqaKf-nni3UstwryosRYXrbPB2bxDD99GmQXUuGdu22tswJiWxAMaAQCZP_ksSKTgFTkBk9M0_6DqM0ecgVD4URJ1NM3S2g3J0KUW7OGyNQW2LobbFUA_FyIrXfx574H83IQNoD2yVD3ZCUaJwTX95vNoh6zSEeGAorhhhOY-fITfINg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900087180</pqid></control><display><type>article</type><title>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rajaram, Murugesan V. S. ; Ni, Bin ; Morris, Jessica D. ; Brooks, Michelle N. ; Carlson, Tracy K. ; Bakthavachalu, Baskar ; Schoenberg, Daniel R. ; Torrelles, Jordi B. ; Schlesinger, Larry S.</creator><creatorcontrib>Rajaram, Murugesan V. S. ; Ni, Bin ; Morris, Jessica D. ; Brooks, Michelle N. ; Carlson, Tracy K. ; Bakthavachalu, Baskar ; Schoenberg, Daniel R. ; Torrelles, Jordi B. ; Schlesinger, Larry S.</creatorcontrib><description>Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1112660108</identifier><identifier>PMID: 21969554</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3' untranslated regions ; Biological Sciences ; Biosynthesis ; Cell culture techniques ; cell walls ; Gene expression ; Gram-positive bacteria ; half life ; Humans ; immune response ; In Vitro Techniques ; Infections ; Kinases ; Lipopolysaccharides - immunology ; Lipopolysaccharides - pharmacology ; Macrophages ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - microbiology ; MAP Kinase Kinase 2 - metabolism ; MAP Kinase Signaling System - immunology ; Messenger RNA ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; mitogen-activated protein kinase ; mitogen-activated protein kinase kinase ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - immunology ; Mycobacterium tuberculosis - pathogenicity ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Physiological regulation ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-akt - metabolism ; receptors ; Ribonucleic acid ; RNA ; RNA Stability ; Signal transduction ; Toll-Like Receptor 2 - metabolism ; Tumor Necrosis Factor-alpha - biosynthesis ; Tumor Necrosis Factor-alpha - genetics ; tumor necrosis factors ; Untranslated regions ; virulence ; Virulence - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (42), p.17408-17413</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 18, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</citedby><cites>FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352517$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352517$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21969554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajaram, Murugesan V. S.</creatorcontrib><creatorcontrib>Ni, Bin</creatorcontrib><creatorcontrib>Morris, Jessica D.</creatorcontrib><creatorcontrib>Brooks, Michelle N.</creatorcontrib><creatorcontrib>Carlson, Tracy K.</creatorcontrib><creatorcontrib>Bakthavachalu, Baskar</creatorcontrib><creatorcontrib>Schoenberg, Daniel R.</creatorcontrib><creatorcontrib>Torrelles, Jordi B.</creatorcontrib><creatorcontrib>Schlesinger, Larry S.</creatorcontrib><title>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3' untranslated regions</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell culture techniques</subject><subject>cell walls</subject><subject>Gene expression</subject><subject>Gram-positive bacteria</subject><subject>half life</subject><subject>Humans</subject><subject>immune response</subject><subject>In Vitro Techniques</subject><subject>Infections</subject><subject>Kinases</subject><subject>Lipopolysaccharides - immunology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>MAP Kinase Kinase 2 - metabolism</subject><subject>MAP Kinase Signaling System - immunology</subject><subject>Messenger RNA</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>mitogen-activated protein kinase</subject><subject>mitogen-activated protein kinase kinase</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological regulation</subject><subject>Promoter Regions, Genetic</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>receptors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Stability</subject><subject>Signal transduction</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>tumor necrosis factors</subject><subject>Untranslated regions</subject><subject>virulence</subject><subject>Virulence - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kkFvEzEQhVcIREPhzAlkcaEcth17ba99QYoqCqhNQVU5W17HSZzu2ou9Wyl_g1-MQ0IKHDjZ0nzvaebpFcVLDKcY6uqs9zqdYowJ54BBPComGCQuOZXwuJgAkLoUlNCj4llKawCQTMDT4ohgySVjdFL8mG1MaLQZbHRjh4axsdGMbUguodb1odPea4-aNpi7hG6vL1DjQtr4YWW3SLNB0S7HVg_OL1GnTQz9Si8tmk2_XpbZ1t3rwc5RH8NgnUd3Li9sEUEns0vyDmk_R53Lopvraf7clJiw5nnxZKHbZF_s3-Pi28WH2_NP5dWXj5_Pp1elYRUeyrnhnGNJ5hKgqa00mBsiOFBDGbOCAVs0VcW1rvOUUsY5q2uuF1jiLGPz6rh4v_Ptx6azc2P9EHWr-ug6HTcqaKf-nni3UstwryosRYXrbPB2bxDD99GmQXUuGdu22tswJiWxAMaAQCZP_ksSKTgFTkBk9M0_6DqM0ecgVD4URJ1NM3S2g3J0KUW7OGyNQW2LobbFUA_FyIrXfx574H83IQNoD2yVD3ZCUaJwTX95vNoh6zSEeGAorhhhOY-fITfINg</recordid><startdate>20111018</startdate><enddate>20111018</enddate><creator>Rajaram, Murugesan V. S.</creator><creator>Ni, Bin</creator><creator>Morris, Jessica D.</creator><creator>Brooks, Michelle N.</creator><creator>Carlson, Tracy K.</creator><creator>Bakthavachalu, Baskar</creator><creator>Schoenberg, Daniel R.</creator><creator>Torrelles, Jordi B.</creator><creator>Schlesinger, Larry S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20111018</creationdate><title>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</title><author>Rajaram, Murugesan V. S. ; Ni, Bin ; Morris, Jessica D. ; Brooks, Michelle N. ; Carlson, Tracy K. ; Bakthavachalu, Baskar ; Schoenberg, Daniel R. ; Torrelles, Jordi B. ; Schlesinger, Larry S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3' untranslated regions</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell culture techniques</topic><topic>cell walls</topic><topic>Gene expression</topic><topic>Gram-positive bacteria</topic><topic>half life</topic><topic>Humans</topic><topic>immune response</topic><topic>In Vitro Techniques</topic><topic>Infections</topic><topic>Kinases</topic><topic>Lipopolysaccharides - immunology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>MAP Kinase Kinase 2 - metabolism</topic><topic>MAP Kinase Signaling System - immunology</topic><topic>Messenger RNA</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>mitogen-activated protein kinase</topic><topic>mitogen-activated protein kinase kinase</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological regulation</topic><topic>Promoter Regions, Genetic</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>receptors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Stability</topic><topic>Signal transduction</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>tumor necrosis factors</topic><topic>Untranslated regions</topic><topic>virulence</topic><topic>Virulence - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaram, Murugesan V. S.</creatorcontrib><creatorcontrib>Ni, Bin</creatorcontrib><creatorcontrib>Morris, Jessica D.</creatorcontrib><creatorcontrib>Brooks, Michelle N.</creatorcontrib><creatorcontrib>Carlson, Tracy K.</creatorcontrib><creatorcontrib>Bakthavachalu, Baskar</creatorcontrib><creatorcontrib>Schoenberg, Daniel R.</creatorcontrib><creatorcontrib>Torrelles, Jordi B.</creatorcontrib><creatorcontrib>Schlesinger, Larry S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaram, Murugesan V. S.</au><au>Ni, Bin</au><au>Morris, Jessica D.</au><au>Brooks, Michelle N.</au><au>Carlson, Tracy K.</au><au>Bakthavachalu, Baskar</au><au>Schoenberg, Daniel R.</au><au>Torrelles, Jordi B.</au><au>Schlesinger, Larry S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-18</date><risdate>2011</risdate><volume>108</volume><issue>42</issue><spage>17408</spage><epage>17413</epage><pages>17408-17413</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21969554</pmid><doi>10.1073/pnas.1112660108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (42), p.17408-17413 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_900087180 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 1-Phosphatidylinositol 3-kinase 3' untranslated regions Biological Sciences Biosynthesis Cell culture techniques cell walls Gene expression Gram-positive bacteria half life Humans immune response In Vitro Techniques Infections Kinases Lipopolysaccharides - immunology Lipopolysaccharides - pharmacology Macrophages Macrophages - drug effects Macrophages - immunology Macrophages - metabolism Macrophages - microbiology MAP Kinase Kinase 2 - metabolism MAP Kinase Signaling System - immunology Messenger RNA MicroRNA MicroRNAs - genetics MicroRNAs - metabolism mitogen-activated protein kinase mitogen-activated protein kinase kinase Mycobacterium tuberculosis Mycobacterium tuberculosis - immunology Mycobacterium tuberculosis - pathogenicity p38 Mitogen-Activated Protein Kinases - metabolism Phosphorylation Physiological regulation Promoter Regions, Genetic Proto-Oncogene Proteins c-akt - metabolism receptors Ribonucleic acid RNA RNA Stability Signal transduction Toll-Like Receptor 2 - metabolism Tumor Necrosis Factor-alpha - biosynthesis Tumor Necrosis Factor-alpha - genetics tumor necrosis factors Untranslated regions virulence Virulence - immunology |
title | Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycobacterium%20tuberculosis%20lipomannan%20blocks%20TNF%20biosynthesis%20by%20regulating%20macrophage%20MAPK-activated%20protein%20kinase%202%20(MK2)%20and%20microRNA%20miR-125b&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rajaram,%20Murugesan%20V.%20S.&rft.date=2011-10-18&rft.volume=108&rft.issue=42&rft.spage=17408&rft.epage=17413&rft.pages=17408-17413&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1112660108&rft_dat=%3Cjstor_proqu%3E41352517%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900087180&rft_id=info:pmid/21969554&rft_jstor_id=41352517&rfr_iscdi=true |