Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b

Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-10, Vol.108 (42), p.17408-17413
Hauptverfasser: Rajaram, Murugesan V. S., Ni, Bin, Morris, Jessica D., Brooks, Michelle N., Carlson, Tracy K., Bakthavachalu, Baskar, Schoenberg, Daniel R., Torrelles, Jordi B., Schlesinger, Larry S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17413
container_issue 42
container_start_page 17408
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Rajaram, Murugesan V. S.
Ni, Bin
Morris, Jessica D.
Brooks, Michelle N.
Carlson, Tracy K.
Bakthavachalu, Baskar
Schoenberg, Daniel R.
Torrelles, Jordi B.
Schlesinger, Larry S.
description Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.
doi_str_mv 10.1073/pnas.1112660108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_900087180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352517</jstor_id><sourcerecordid>41352517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</originalsourceid><addsrcrecordid>eNp9kkFvEzEQhVcIREPhzAlkcaEcth17ba99QYoqCqhNQVU5W17HSZzu2ou9Wyl_g1-MQ0IKHDjZ0nzvaebpFcVLDKcY6uqs9zqdYowJ54BBPComGCQuOZXwuJgAkLoUlNCj4llKawCQTMDT4ohgySVjdFL8mG1MaLQZbHRjh4axsdGMbUguodb1odPea4-aNpi7hG6vL1DjQtr4YWW3SLNB0S7HVg_OL1GnTQz9Si8tmk2_XpbZ1t3rwc5RH8NgnUd3Li9sEUEns0vyDmk_R53Lopvraf7clJiw5nnxZKHbZF_s3-Pi28WH2_NP5dWXj5_Pp1elYRUeyrnhnGNJ5hKgqa00mBsiOFBDGbOCAVs0VcW1rvOUUsY5q2uuF1jiLGPz6rh4v_Ptx6azc2P9EHWr-ug6HTcqaKf-nni3UstwryosRYXrbPB2bxDD99GmQXUuGdu22tswJiWxAMaAQCZP_ksSKTgFTkBk9M0_6DqM0ecgVD4URJ1NM3S2g3J0KUW7OGyNQW2LobbFUA_FyIrXfx574H83IQNoD2yVD3ZCUaJwTX95vNoh6zSEeGAorhhhOY-fITfINg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900087180</pqid></control><display><type>article</type><title>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rajaram, Murugesan V. S. ; Ni, Bin ; Morris, Jessica D. ; Brooks, Michelle N. ; Carlson, Tracy K. ; Bakthavachalu, Baskar ; Schoenberg, Daniel R. ; Torrelles, Jordi B. ; Schlesinger, Larry S.</creator><creatorcontrib>Rajaram, Murugesan V. S. ; Ni, Bin ; Morris, Jessica D. ; Brooks, Michelle N. ; Carlson, Tracy K. ; Bakthavachalu, Baskar ; Schoenberg, Daniel R. ; Torrelles, Jordi B. ; Schlesinger, Larry S.</creatorcontrib><description>Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1112660108</identifier><identifier>PMID: 21969554</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3' untranslated regions ; Biological Sciences ; Biosynthesis ; Cell culture techniques ; cell walls ; Gene expression ; Gram-positive bacteria ; half life ; Humans ; immune response ; In Vitro Techniques ; Infections ; Kinases ; Lipopolysaccharides - immunology ; Lipopolysaccharides - pharmacology ; Macrophages ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - microbiology ; MAP Kinase Kinase 2 - metabolism ; MAP Kinase Signaling System - immunology ; Messenger RNA ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; mitogen-activated protein kinase ; mitogen-activated protein kinase kinase ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - immunology ; Mycobacterium tuberculosis - pathogenicity ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Physiological regulation ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-akt - metabolism ; receptors ; Ribonucleic acid ; RNA ; RNA Stability ; Signal transduction ; Toll-Like Receptor 2 - metabolism ; Tumor Necrosis Factor-alpha - biosynthesis ; Tumor Necrosis Factor-alpha - genetics ; tumor necrosis factors ; Untranslated regions ; virulence ; Virulence - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (42), p.17408-17413</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 18, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</citedby><cites>FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352517$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352517$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21969554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajaram, Murugesan V. S.</creatorcontrib><creatorcontrib>Ni, Bin</creatorcontrib><creatorcontrib>Morris, Jessica D.</creatorcontrib><creatorcontrib>Brooks, Michelle N.</creatorcontrib><creatorcontrib>Carlson, Tracy K.</creatorcontrib><creatorcontrib>Bakthavachalu, Baskar</creatorcontrib><creatorcontrib>Schoenberg, Daniel R.</creatorcontrib><creatorcontrib>Torrelles, Jordi B.</creatorcontrib><creatorcontrib>Schlesinger, Larry S.</creatorcontrib><title>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3' untranslated regions</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell culture techniques</subject><subject>cell walls</subject><subject>Gene expression</subject><subject>Gram-positive bacteria</subject><subject>half life</subject><subject>Humans</subject><subject>immune response</subject><subject>In Vitro Techniques</subject><subject>Infections</subject><subject>Kinases</subject><subject>Lipopolysaccharides - immunology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>MAP Kinase Kinase 2 - metabolism</subject><subject>MAP Kinase Signaling System - immunology</subject><subject>Messenger RNA</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>mitogen-activated protein kinase</subject><subject>mitogen-activated protein kinase kinase</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological regulation</subject><subject>Promoter Regions, Genetic</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>receptors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Stability</subject><subject>Signal transduction</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Tumor Necrosis Factor-alpha - biosynthesis</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>tumor necrosis factors</subject><subject>Untranslated regions</subject><subject>virulence</subject><subject>Virulence - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kkFvEzEQhVcIREPhzAlkcaEcth17ba99QYoqCqhNQVU5W17HSZzu2ou9Wyl_g1-MQ0IKHDjZ0nzvaebpFcVLDKcY6uqs9zqdYowJ54BBPComGCQuOZXwuJgAkLoUlNCj4llKawCQTMDT4ohgySVjdFL8mG1MaLQZbHRjh4axsdGMbUguodb1odPea4-aNpi7hG6vL1DjQtr4YWW3SLNB0S7HVg_OL1GnTQz9Si8tmk2_XpbZ1t3rwc5RH8NgnUd3Li9sEUEns0vyDmk_R53Lopvraf7clJiw5nnxZKHbZF_s3-Pi28WH2_NP5dWXj5_Pp1elYRUeyrnhnGNJ5hKgqa00mBsiOFBDGbOCAVs0VcW1rvOUUsY5q2uuF1jiLGPz6rh4v_Ptx6azc2P9EHWr-ug6HTcqaKf-nni3UstwryosRYXrbPB2bxDD99GmQXUuGdu22tswJiWxAMaAQCZP_ksSKTgFTkBk9M0_6DqM0ecgVD4URJ1NM3S2g3J0KUW7OGyNQW2LobbFUA_FyIrXfx574H83IQNoD2yVD3ZCUaJwTX95vNoh6zSEeGAorhhhOY-fITfINg</recordid><startdate>20111018</startdate><enddate>20111018</enddate><creator>Rajaram, Murugesan V. S.</creator><creator>Ni, Bin</creator><creator>Morris, Jessica D.</creator><creator>Brooks, Michelle N.</creator><creator>Carlson, Tracy K.</creator><creator>Bakthavachalu, Baskar</creator><creator>Schoenberg, Daniel R.</creator><creator>Torrelles, Jordi B.</creator><creator>Schlesinger, Larry S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20111018</creationdate><title>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</title><author>Rajaram, Murugesan V. S. ; Ni, Bin ; Morris, Jessica D. ; Brooks, Michelle N. ; Carlson, Tracy K. ; Bakthavachalu, Baskar ; Schoenberg, Daniel R. ; Torrelles, Jordi B. ; Schlesinger, Larry S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-dc666192d900b7e9c16c28604c455e8505fb336aa7b7e445665776af1916195d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3' untranslated regions</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell culture techniques</topic><topic>cell walls</topic><topic>Gene expression</topic><topic>Gram-positive bacteria</topic><topic>half life</topic><topic>Humans</topic><topic>immune response</topic><topic>In Vitro Techniques</topic><topic>Infections</topic><topic>Kinases</topic><topic>Lipopolysaccharides - immunology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>MAP Kinase Kinase 2 - metabolism</topic><topic>MAP Kinase Signaling System - immunology</topic><topic>Messenger RNA</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>mitogen-activated protein kinase</topic><topic>mitogen-activated protein kinase kinase</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological regulation</topic><topic>Promoter Regions, Genetic</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>receptors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Stability</topic><topic>Signal transduction</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Tumor Necrosis Factor-alpha - biosynthesis</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>tumor necrosis factors</topic><topic>Untranslated regions</topic><topic>virulence</topic><topic>Virulence - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaram, Murugesan V. S.</creatorcontrib><creatorcontrib>Ni, Bin</creatorcontrib><creatorcontrib>Morris, Jessica D.</creatorcontrib><creatorcontrib>Brooks, Michelle N.</creatorcontrib><creatorcontrib>Carlson, Tracy K.</creatorcontrib><creatorcontrib>Bakthavachalu, Baskar</creatorcontrib><creatorcontrib>Schoenberg, Daniel R.</creatorcontrib><creatorcontrib>Torrelles, Jordi B.</creatorcontrib><creatorcontrib>Schlesinger, Larry S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaram, Murugesan V. S.</au><au>Ni, Bin</au><au>Morris, Jessica D.</au><au>Brooks, Michelle N.</au><au>Carlson, Tracy K.</au><au>Bakthavachalu, Baskar</au><au>Schoenberg, Daniel R.</au><au>Torrelles, Jordi B.</au><au>Schlesinger, Larry S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-10-18</date><risdate>2011</risdate><volume>108</volume><issue>42</issue><spage>17408</spage><epage>17413</epage><pages>17408-17413</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPKactivated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3 UTR region of TNF mRNA and destabilizes the transcript whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M. tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M. tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M. tb to subvert host immunity and potentially increase its virulence.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21969554</pmid><doi>10.1073/pnas.1112660108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-10, Vol.108 (42), p.17408-17413
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_900087180
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 1-Phosphatidylinositol 3-kinase
3' untranslated regions
Biological Sciences
Biosynthesis
Cell culture techniques
cell walls
Gene expression
Gram-positive bacteria
half life
Humans
immune response
In Vitro Techniques
Infections
Kinases
Lipopolysaccharides - immunology
Lipopolysaccharides - pharmacology
Macrophages
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Macrophages - microbiology
MAP Kinase Kinase 2 - metabolism
MAP Kinase Signaling System - immunology
Messenger RNA
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
mitogen-activated protein kinase
mitogen-activated protein kinase kinase
Mycobacterium tuberculosis
Mycobacterium tuberculosis - immunology
Mycobacterium tuberculosis - pathogenicity
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Physiological regulation
Promoter Regions, Genetic
Proto-Oncogene Proteins c-akt - metabolism
receptors
Ribonucleic acid
RNA
RNA Stability
Signal transduction
Toll-Like Receptor 2 - metabolism
Tumor Necrosis Factor-alpha - biosynthesis
Tumor Necrosis Factor-alpha - genetics
tumor necrosis factors
Untranslated regions
virulence
Virulence - immunology
title Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mycobacterium%20tuberculosis%20lipomannan%20blocks%20TNF%20biosynthesis%20by%20regulating%20macrophage%20MAPK-activated%20protein%20kinase%202%20(MK2)%20and%20microRNA%20miR-125b&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rajaram,%20Murugesan%20V.%20S.&rft.date=2011-10-18&rft.volume=108&rft.issue=42&rft.spage=17408&rft.epage=17413&rft.pages=17408-17413&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1112660108&rft_dat=%3Cjstor_proqu%3E41352517%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900087180&rft_id=info:pmid/21969554&rft_jstor_id=41352517&rfr_iscdi=true